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Overview of Today’s Lecture

v Questions we are trying to answer today:

Part 1: What are lattices?

Part 2: What are lattice problems?

Part 3: What is lattice-based cryptography?

Part 4: What are the current challenges?

� References:

Crash Course Spring 2022 [lecture notes]

The Lattice Club [link]

where to start

whete to go next
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https://katinkabou.github.io/Documents/PhDCourse_LatticeHardnessAssumptions.pdf
https://thelatticeclub.com/


Context

 The security in public-key cryptography relies on presumably hard mathematical
problems.

Currently used problems:

Discrete logarithm → Arantxa’s proof system

Factoring

 ∃ poly-time quantum algorithm [Sho97]

Quantum-resistant candidates:

Codes

Lattices

→ now

Isogenies

→ later with Chloe

Multivariate systems

?

Fernando (INCA)
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US National Institute of Standards and Technology (NIST) Project

2016: start of NIST’s post-quantum cryptography project⋆

2022: selection of 4 schemes, 3 of them relying on lattice problems

µ Public Key Encryption:

Kyber

Ò Digital Signature:

Dilithium

Falcon

SPHINCS+

 Lattice-based cryptography plays a leading role in designing post-quantum
cryptography.

⋆https://csrc.nist.gov/projects/post-quantum-cryptography
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Part 1:

What is a lattice?
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Euclidean Lattices

 An Euclidean lattice Λ is a discrete additive subgroup of Rn.

additive subgroup: 0 ∈ Λ, and for all x,y ∈ Λ it holds x+ y,−x ∈ Λ;

discrete: every x ∈ Λ has a neighborhood in which x is the only lattice point.
∃ε > 0 such that B(x, ε) ∩ Λ = {x }

There exists a finite basis B = (b1, . . . ,bn) ⊂ Rn such that

Λ(B) =

{
n∑

i=1

zibi : zi ∈ Z

}
.

n is the rank of Λ
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Euclidean Lattices

Let B ∈ Rn×n be a basis for Λ, i.e.,

Λ(B) =

{
n∑

i=1

zibi : zi ∈ Z

}
= {Bz : z ∈ Zn} .
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b̃1
b̃2

U ∈ Zn×n unimodular, then B̃ = B ·U also a basis of Λ det(U) = ±1
det(Λ) := |det(B)|

Λ ∈ R2
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Dual Lattices

The dual of a lattice Λ ⊂ Rn is defined as

Λ∨ = {w ∈ Rn : ⟨w,x⟩ ∈ Z ∀x ∈ Λ} .

if B a basis for Λ, then (BT )−1 a basis for Λ∨

det(Λ∨) = det(Λ)−1
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2Z2 and its dual 1
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Z2
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Lattice Minimum & Special Lattices

The minimum of a lattice Λ ⊂ Rn is defined as

λ1(Λ) = min
x∈Λ\{0}

∥x∥2.

Minkowski: λ1(Λ) ≤
√
n · det(Λ)1/n

3 Exercise: λ1(Λ) · λ1(Λ
∨) ≤ n

Let A ∈ Zm×n
q for some n,m, q ∈ N with n ≤ m Zq integers modulo q

Λq(A) = {y ∈ Zm : y = As mod q for some s ∈ Zn}

Λ⊥
q (A) =

{
y ∈ Zm : ATy = 0 mod q

}
3 Exercise: Λ⊥

q (A) = q · Λq(A)∨
Am

n
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Part 2:

What are lattice problems?
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Shortest Vector Problem

Given a lattice Λ ∈ Rn of rank n.

The shortest vector problem (SVP) asks to
find a vector w ∈ Λ such that

∥w∥2 = λ1(Λ).

The complexity of SVPγ increases with n, but
decreases with γ.

Conjecture:

There is no polynomial-time classical or

quantum algorithm that solves SVPγ to within

polynomial factors.

b1b2

λ1

γλ1
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Shortest Vector Problem
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Bounded Distance Decoding

Given a lattice Λ ∈ Rn of rank n and a
target t ∈ Rn such dist(Λ, t) ≤ δ < λ1(Λ).

The bounded distance decoding (BDDδ)
problem asks to find the unique vector w ∈ Λ
such that

∥w − t∥2 ≤ δ.

The complexity of BDDδ increases with n and
with δ.

Conjecture:

There is no polynomial-time classical or

quantum algorithm that solves BDDδ to within

polynomial factors.

b1b2

t δ

w
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Short Integer Solution [Ajt96]

Given a matrix A ∈ Zm×n
q sampled uniformly at

random and bound β > 0.

The short integer solution (SISβ) problem asks
to find a vector z ∈ Zm of norm 0 < ∥z∥2 ≤ β
such that

AT z = 0 mod q.

 The norm restriction makes it a hard
problem!

Recall:

Λ⊥
q (A) =

{
y ∈ Zm : ATy = 0 mod q

}

ATn

m

z m

1

= 0

 SISβ equals SVPγ in the special lattice Λ⊥
q (A) for β = γ · λ1(Λ

⊥
q (A))
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Learning With Errors [Reg05]

Given a matrix A← Unif(Zm×n
q ).

Given a vector b ∈ Zm
q , where b = As+ e mod q for

secret s ∈ Zn
q sampled from distribution Ds and

noise/error e ∈ Zm sampled from distribution
De such that ∥e∥2 ≤ δ ≪ q.

Search learning with errors (S-LWEδ) asks to find s.

Decision learning with errors (D-LWEδ) asks to
distinguish (A,b) from the uniform distribution over

Zm×n
q × Zm

q .

 The present noise makes S-LWE a hard problem.

 The norm restriction on e makes D-LWE a hard
problem!

A , A

s

+ em

n

≈ uniform

→ find s

3 Exercise: S-LWEδ equals BDDδ in the special lattice Λq(A).
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Connection between LWE and SIS

 If there is an efficient solver for SISβ , then there is an efficient solver for D-LWEδ,
assuming δ · β ≪ q.

Proof.

Given (A,b), our goal is to decide whether 1) b = As+ e for ∥e∥2 ≤ δ or
2) b← Unif(Zm

q ).

Forward A to SIS-solver and receive back z such that AT z = 0 mod q and ∥z∥2 ≤ β.

Compute
∥∥bT z

∥∥
∞. If the norm is ≪ q, claim that we are in case 1). Else, claim that we

are in case 2).

Case 1) b = As+ e, thus bT z = sTAT z+ eT z = eT z mod q. Thus∥∥bT z
∥∥
∞ ≤

∥∥eT
∥∥
∞ · ∥z∥∞ ≤ δ · β ≪ q.

Case 2) b uniform, so is bT z and hence
∥∥bT z

∥∥
∞ with high chances larger than δβ.
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Part 3:

What is lattice-based cryptography?

Katharina Boudgoust Lattice-Based Cryptography 19th April 2023 16 / 33



Collision-Resistant Hash Function from SIS [Ajt96]

A function f : Domain→ Range is called collision-resistant if it is hard to output two
elements x,x′ ∈ Domain such that

f(x) = f(x′) and x ̸= x′.

Set fA : {0, 1}m → Zn
q with fA(x) = ATx mod q for A← Unif(Zm×n

q ).

AT

x

3 Exercise: Assuming SIS is hard to solve for β =
√
m, then fA is collision-resistant

Hint: x ̸= x′ ∈ {0, 1}m ⇔ 0 ̸= x− x′ ∈ {−1, 0, 1}m

ATx = ATx′ ⇔ AT (x− x′) = 0
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Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme Π = (KGen,Enc,Dec) consists of three algorithms:

KGen(1λ)→ (sk, pk) λ security parameter

Enc(pk,m)→ ct

Dec(sk, ct) = m′

Correctness: Dec(sk,Enc(pk,m)) = m during an honest execution

Semantic Security: Enc(pk,m0) is indistinguishable from Enc(pk,m1)
(IND-CPA)
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Public-Key Encryption from LWE [Reg05]

Let χ be distribution on Z.

KGen(1λ):
▶ A← Unif(Zn×n

q ) and s, e← χn

▶ b = As+ e mod q
▶ Output sk = s and pk = (A,b)

Enc(pk,m ∈ {0, 1}):
▶ r, f ← χn and f ′ ← χ
▶ u = rA+ f
▶ v = rb+ f ′ + ⌊q/2⌋ ·m
▶ Output ct = (u, v)

Dec(sk, ct):
▶ If v − us is closer to 0 than to q/2, output m′ = 0
▶ Else output m′ = 1

A , A s + e = b

r A b + f f ′ + m

∗
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▶ Output ct = (u, v)

Dec(sk, ct):
▶ If v − us is closer to 0 than to q/2, output m′ = 0
▶ Else output m′ = 1

Semantic Security: Assume hardness of decision LWE

1. replace b by uniform random vector

2. replace non-message part (∗) by uniform random vector

3. then the message is completely hidden

A , A s + e = b

r A b + f f ′ + m

∗
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Kyber - Selected for Standardization by NIST

 Kyber = the previous construction + several improvements

Main improvements:

1. Structured LWE variant (most important)

2. LWE secret and noise from centered binomial distribution

3. Pseudorandomness for distributions

4. Ciphertext compression

Sources:

Website of Kyber: https://pq-crystals.org/kyber/

Latest specifications [link]

Tutorial by V. Lyubashevsky [link]
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5 Min
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Part 4:

What are (my) current challenges?
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Re-Reminder: Public Key Encryption (PKE)

PKE scheme:

KGen(1λ)→ (pk, sk) λ security parameter

Enc(pk,m)→ ct µ

Dec(sk, ct)→ m′

Properties:

Correctness

Semantic security

µ

 Single Point of Failure

secret key
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Threshold Public Key Encryption (TPKE)

t-out-of-n Threshold PKE scheme:

KGen(1λ)→ (pk, sk1, . . . , skn) secret sharing

Enc(pk,m)→ ct

PartDec(ski, ct
′)→ di i ∈ { 1, . . . , n }

Combine({ di }i∈S)→ m′ S ⊂ { 1, . . . , n }

Properties:

Correctness for |S| > t recover correct message

Partial decryption security for |S| ≤ t no information is leaked

Semantic security

Applications:

Storing sensitive data NIST’s call⋆

Electronic voting protocols

Multiparty computations → Chris yesterday, Daniel later

µ

n

n

n

sk1

sk2

sk3

⋆https://csrc.nist.gov/projects/threshold-cryptography
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Reminder: PKE from LWE

KGen(1λ):
▶ A← Unif(Zn×n

q ) and s, e← χn

▶ b = As+ e mod q
▶ Output sk = s and pk = (A,b)

Enc(pk,m ∈ {0, 1}):
▶ r, f ← χn and f ′ ← χ
▶ u = rA+ f
▶ v = rb+ f ′ + ⌊q/2⌋ ·m
▶ Output ct = (u, v)

Dec(sk, ct):
▶ If v − us is closer to 0 than to q/2, output m′ = 0
▶ Else output m′ = 1

In order to thresholdize it:

modify KGen and replace Dec by PartDec and Combine

(Enc stays the same)

A , A s + e = b

r A b + f f ′ + m
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Full-Threshold PKE from LWE, First Trial

KGen(1λ):
▶ A← Unif(Zn×n

q ) and s, e← χn

▶ b = As+ e mod q
▶ s1, . . . , sn−1 ← Unif(Zn

q )

▶ sn = s−
∑n−1

i=1 si
▶ Output ski = si and pk = (A,b)

PartDec(ski, (u, v)):
▶ Output di = usi

Combine(d1, . . . , dn):
▶ d =

∑n
i=1 di

▶ If v − d is closer to 0 than to q/2, output m′ = 0
▶ Else output m′ = 1

A , A s + e = b

(n-out-of-n)

∗ ciphertext noise
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v −
n∑

i=1

usi = v − u
n∑

i=1

si = v − us

= re+ f ′ − fs+ ⌊q/2⌋m

Decryption succeeds if |∗| < q/8

A , A s + e = b

(n-out-of-n)

∗ ciphertext noise
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v −
n∑

i=1

usi = v − u
n∑

i=1

si = v − us

= re+ f ′ − fs+ ⌊q/2⌋m

 But (∗) leaks information about sk = s!

A , A s + e = b

(n-out-of-n)

∗ ciphertext noise
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Full-Threshold PKE from LWE [BD10]
KGen(1λ):

▶ A← Unif(Zn×n
q ) and s, e← χn

▶ b = As+ e mod q
▶ s =

∑n
i=1 si

▶ Output ski = si and pk = (A,b)

PartDec(ski, ct):
▶ Sample ei ← Dflood
▶ Output di = usi + ei

Combine(d1, . . . , dn):
▶ d =

∑n
i=1 di

▶ If v − d is closer to 0 than to q/2, output m′ = 0
▶ Else output m′ = 1

Correctness:

v −
n∑

i=1

usi + ei = v − u
n∑

i=1

si + ei = v − us+
n∑

i=1

ei

= re+ f ′ − fs+
n∑

i=1

ei + ⌊q/2⌋m

A , A s + e = b

∗
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Put under the carpet for today . . .

 It is non-trivial to go from full-threshold to arbitrary threshold PKE
if you are working with lattices ;-)

n-out-of-n threshold∑n
i=1 ei

t-out-of-n threshold∑
i∈S λiei

? There are solutions, but not very efficient for large n.

still needs to be small
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Partial Decryption Security

Two worlds:

Real: ect = re+ f ′ − fs and eflood =
∑

i ei

Simulated: only eflood =
∑

i ei

How close are they? [BD10] measures with statistical distance ∆

∆(Real, Sim) ≤ ∆(eflood + ect, eflood) ≤ negl(λ)

Problem:

∥eflood∥ needs to be super-polynomially larger than ∥ect∥
LWE-based constructions: ∥eflood∥ ∼ LWE modulus q and ∥ect∥ ∼ LWE noise e,
thus super-polynomial modulus-noise ratio

▶ Larger parameters
▶ Easier problem

A , A

s

+ e mod q

 Idea:
change the
measure!
[BLR+18]
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Improved Noise Flooding via Rényi Divergence 1/2

Let P,Q be discrete probability distributions

In [BD10]: Statistical Distance ∆(P,Q) = 1
2

∑
x∈Supp(P )|P (x)−Q(x)|

In [BS23]: Rényi Divergence

RD(P,Q) =
∑

x∈Supp(P )

P (x)2

Q(x)

Both fulfill the probability preservation property for an event E:

[BD10]: P (E) ≤ ∆(P,Q) +Q(E) (additive)
Our work: P (E)2 ≤ RD(P,Q) ·Q(E) (multiplicative)

Q(E) negligible ⇒ P (E) negligible

∆(P,Q) =! negligible and RD(P,Q) =! constant

⊂ Supp(Q)
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2

∑
x∈Supp(P )|P (x)−Q(x)|

In [BS23]: Rényi Divergence

RD(P,Q) =
∑

x∈Supp(P )

P (x)2

Q(x)

Both fulfill the probability preservation property for an event E:

[BD10]: P (E) ≤ ∆(P,Q) +Q(E) (additive)
Our work: P (E)2 ≤ RD(P,Q) ·Q(E) (multiplicative)
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Improved Noise Flooding via Rényi Divergence 2/2

Two worlds:

Real: ect and eflood

Simulated: only eflood

How close are they?

∆(Real, Sim) ≤ ∆(eflood + ect, eflood) ≤ negl(λ)

RD(Real, Sim) ≤ RD(eflood + ect, eflood) ≤ constant

Advantage:

∥eflood∥ only needs to be polynomially larger than ∥ect∥
LWE-based constructions: polynomial modulus-noise ratio

Disadvantage:

1) Rényi divergence depends on the number of issued partial decryptions

→ from simulation-based to game-based security notion

2) Works well with search problems, not so well with decision problems
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Zooming out - leakage on secret key

Two worlds:

Real: f(sk) and eflood f some function

Simulated: only eflood

How close are they?

∆(Real, Sim) ≤ ∆(eflood + f(sk), eflood) ≤ negl(λ)

RD(Real, Sim) ≤ RD(eflood + f(sk), eflood) ≤ constant

Examples:

Threshold decryption: f(sk) is the ciphertext noise [BS23]

Signatures schemes: f(sk) is part of a signature [Raccoon]

Alternative Approaches:

Rejection Sampling → Dilithium

LWE with hints aka just accept the leakage

 We don’t yet understand
very well when which approach is optimal
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Wrap-Up

v Hopefully you have now a rough idea:

Part 1: What lattices are!

Part 2: What lattice problems are!

Part 3: What lattice-based cryptography is!

Part 4: What particular challenges are!

Any questions or interested in my research?

7 Reach out to me today or at Latincrypt

 Write me an e-mail

¡Muchas Gracias!
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