Lattice-Based Cryptography Criptografía basada en retículos

where to start and where to go next

Katharina Boudgoust

until 2023

Postdoc Aarhus University Denmark from 2024

Researcher CNRS LIRMM Montpellier France

Overview of Today's Lecture

Questions we are trying to answer today:

- Part 1: What are lattices?
- Part 2: What are lattice problems?
- Part 3: What is lattice-based cryptography?
- Part 4: What are the current challenges?

References:

- Crash Course Spring 2022 [lecture notes]
- The Lattice Club [link]

Context

 \bigcirc The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarithm \rightarrow Arantxa's proof system
- Factoring

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

Discrete logarithm → Arantxa's proof system
 Factoring

▲ ∃ poly-time quantum algorithm [Sho97]

Quantum-resistant candidates:

- Codes
- Lattices
- Isogenies
- Multivariate systems

• ?

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

Discrete logarithm → Arantxa's proof system
 Factoring

▲ ∃ poly-time quantum algorithm [Sho97]

Quantum-resistant candidates:

- Codes
- Lattices \rightarrow now
- Isogenies \rightarrow later with Chloe
- Multivariate systems

• ?

Fernando (INCA)

US National Institute of Standards and Technology (NIST) Project 🔀

- 2016: start of NIST's post-quantum cryptography project*
- 2022: selection of 4 schemes, 3 of them relying on lattice problems

C Lattice-based cryptography plays a leading role in designing post-quantum cryptography.

^{*}https://csrc.nist.gov/projects/post-quantum-cryptography

Part 1: *What is a lattice?*

 \mathcal{O} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

 \mathcal{O} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

- additive subgroup: $\mathbf{0} \in \Lambda$, and for all $\mathbf{x}, \mathbf{y} \in \Lambda$ it holds $\mathbf{x} + \mathbf{y}, -\mathbf{x} \in \Lambda$;
- discrete: every $\mathbf{x} \in \Lambda$ has a neighborhood in which \mathbf{x} is the only lattice point. $\exists \varepsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{\mathbf{x}\}$

 \mathcal{O} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^n .

- additive subgroup: $\mathbf{0} \in \Lambda$, and for all $\mathbf{x}, \mathbf{y} \in \Lambda$ it holds $\mathbf{x} + \mathbf{y}, -\mathbf{x} \in \Lambda$;
- discrete: every $\mathbf{x} \in \Lambda$ has a neighborhood in which \mathbf{x} is the only lattice point. $\exists \varepsilon > 0$ such that $\mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda = \{\mathbf{x}\}$

There exists a finite basis $\mathbf{B} = (\mathbf{b}_1, \dots, \mathbf{b}_n) \subset \mathbb{R}^n$ such that

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\}.$$

 $\bullet \ n$ is the rank of Λ

Let $\mathbf{B} \in \mathbb{R}^{n imes n}$ be a basis for Λ , i.e.,

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\} = \left\{ \mathbf{B} \mathbf{z} \colon \mathbf{z} \in \mathbb{Z}^n \right\}.$$

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ , i.e.,

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} z_i \mathbf{b}_i \colon z_i \in \mathbb{Z} \right\} = \left\{ \mathbf{B} \mathbf{z} \colon \mathbf{z} \in \mathbb{Z}^n \right\}.$$

• $\mathbf{U} \in \mathbb{Z}^{n \times n}$ unimodular, then $\widetilde{\mathbf{B}} = \mathbf{B} \cdot \mathbf{U}$ also a basis of Λ $\det(\mathbf{U}) = \pm 1$ • $\det(\Lambda) := |\det(\mathbf{B})|$

Dual Lattices

The dual of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

$$\Lambda^{\vee} = \{ \mathbf{w} \in \mathbb{R}^n \colon \langle \mathbf{w}, \mathbf{x} \rangle \in \mathbb{Z} \,\, \forall \mathbf{x} \in \Lambda \} \,.$$

Dual Lattices

The dual of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

$$\Lambda^{\vee} = \{ \mathbf{w} \in \mathbb{R}^n \colon \langle \mathbf{w}, \mathbf{x} \rangle \in \mathbb{Z} \ \forall \mathbf{x} \in \Lambda \} \,.$$

- if ${f B}$ a basis for Λ , then $({f B}^T)^{-1}$ a basis for Λ^{\vee}
- $\det(\Lambda^{\vee}) = \det(\Lambda)^{-1}$

 $2\mathbb{Z}^2$ and its dual $\frac{1}{2}\mathbb{Z}^2$

Lattice Minimum & Special Lattices

The minimum of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

$$\lambda_1(\Lambda) = \min_{\mathbf{x} \in \Lambda \setminus \{\mathbf{0}\}} \|\mathbf{x}\|_2.$$

- Minkowski: $\lambda_1(\Lambda) \leq \sqrt{n} \cdot \det(\Lambda)^{1/n}$
- $\boldsymbol{Q}_{\boldsymbol{S}}^{\boldsymbol{S}}$ Exercise: $\lambda_1(\Lambda) \cdot \lambda_1(\Lambda^{\vee}) \leq n$

Lattice Minimum & Special Lattices

The minimum of a lattice $\Lambda \subset \mathbb{R}^n$ is defined as

$$\lambda_1(\Lambda) = \min_{\mathbf{x} \in \Lambda \setminus \{\mathbf{0}\}} \|\mathbf{x}\|_2.$$

• Minkowski:
$$\lambda_1(\Lambda) \leq \sqrt{n} \cdot \det(\Lambda)^{1/n}$$

•
$$\mathfrak{Q}_{\mathfrak{s}}^{\mathfrak{s}}$$
 Exercise: $\lambda_1(\Lambda) \cdot \lambda_1(\Lambda^{\vee}) \leq n$

Let $\mathbf{A} \in \mathbb{Z}_q^{m imes n}$ for some $n, m, q \in \mathbb{N}$ with $n \le m$ \mathbb{Z}_q integers modulo q

$$\Lambda_{q}(\mathbf{A}) = \{\mathbf{y} \in \mathbb{Z}^{m} : \mathbf{y} = \mathbf{As} \mod q \text{ for some } \mathbf{s} \in \mathbb{Z}^{n}\}$$
$$\Lambda_{q}^{\perp}(\mathbf{A}) = \left\{\mathbf{y} \in \mathbb{Z}^{m} : \mathbf{A}^{T}\mathbf{y} = \mathbf{0} \mod q\right\}$$
$$m \left\{ \begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \bullet \quad \mathbf{Q}_{\mathbf{b}}^{\mathbf{a}} \text{ Exercise: } \Lambda_{q}^{\perp}(\mathbf{A}) = q \cdot \Lambda_{q}(\mathbf{A})^{\vee} \end{array}\right.$$

Part 2: What are lattice problems?

Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^n$ of rank n.

The shortest vector problem (SVP) asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$\|\mathbf{w}\|_2 = \lambda_1(\Lambda)$$

Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^n$ of rank n.

The approximate shortest vector problem (SVP $_{\gamma})$ for $\gamma \geq 1$ asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$\|\mathbf{w}\|_2 \leq \gamma \lambda_1(\Lambda).$$

Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^n$ of rank n.

The approximate shortest vector problem (SVP $_{\gamma})$ for $\gamma \geq 1$ asks to find a vector $\mathbf{w} \in \Lambda$ such that

 $\|\mathbf{w}\|_2 \leq \gamma \lambda_1(\Lambda).$

The complexity of ${\rm SVP}_{\gamma}$ increases with n, but decreases with $\gamma.$

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves SVP γ to within polynomial factors.

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of rank n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)$.

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of rank n and a target $\mathbf{t} \in \mathbb{R}^n$ such dist $(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)$.

The bounded distance decoding (BDD_δ) problem asks to find the unique vector $\mathbf{w}\in\Lambda$ such that

$$\|\mathbf{w} - \mathbf{t}\|_2 \le \delta.$$

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^n$ of rank n and a target $\mathbf{t} \in \mathbb{R}^n$ such $dist(\Lambda, \mathbf{t}) \leq \delta < \lambda_1(\Lambda)$.

The bounded distance decoding (BDD_δ) problem asks to find the unique vector $\mathbf{w}\in\Lambda$ such that

$$\|\mathbf{w} - \mathbf{t}\|_2 \le \delta.$$

The complexity of BDD_{δ} increases with n and with δ .

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves BDD_{δ} to within polynomial factors.

12/33

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random and bound $\beta > 0.$

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m \times n}$ sampled uniformly at random and bound $\beta > 0$.

The short integer solution (SIS_{β}) problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $0 < \|\mathbf{z}\|_2 \leq \beta$ such that

$$\mathbf{A}^T \mathbf{z} = \mathbf{0} \mod q.$$

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m imes n}$ sampled uniformly at random and bound $\beta > 0$.

The short integer solution (SIS_{β}) problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $0 < \|\mathbf{z}\|_2 \le \beta$ such that

$$\mathbf{A}^T \mathbf{z} = \mathbf{0} \bmod q.$$

A The norm restriction makes it a hard problem!

Given a matrix $\mathbf{A} \in \mathbb{Z}_q^{m imes n}$ sampled uniformly at random and bound $\beta > 0$.

The short integer solution (SIS_{β}) problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^m$ of norm $0 < \|\mathbf{z}\|_2 \le \beta$ such that

$$\mathbf{A}^T \mathbf{z} = \mathbf{0} \bmod q.$$

A The norm restriction makes it a hard problem!

Recall:

$$\Lambda_q^{\perp}(\mathbf{A}) = \left\{ \mathbf{y} \in \mathbb{Z}^m \colon \mathbf{A}^T \mathbf{y} = \mathbf{0} \bmod q \right\}$$

 \bigcirc SIS $_{\beta}$ equals SVP $_{\gamma}$ in the special lattice $\Lambda_q^{\perp}(\mathbf{A})$ for $\beta = \gamma \cdot \lambda_1(\Lambda_q^{\perp}(\mathbf{A}))$

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE $_{\delta}$) asks to find s.

Decision learning with errors (D-LWE_{δ}) asks to distinguish (A, b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE $_{\delta}$) asks to find s.

Decision learning with errors (D-LWE_{δ}) asks to distinguish (A, b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

A The present noise makes S-LWE a hard problem.

A The norm restriction on e makes D-LWE a hard problem!

Given a matrix $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Given a vector $\mathbf{b} \in \mathbb{Z}_q^m$, where $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_q^n$ sampled from distribution D_s and
- noise/error $\mathbf{e} \in \mathbb{Z}^m$ sampled from distribution D_e such that $\|\mathbf{e}\|_2 \leq \delta \ll q$.

Search learning with errors (S-LWE $_{\delta}$) asks to find s.

Decision learning with errors (D-LWE_{δ}) asks to distinguish (A, b) from the uniform distribution over $\mathbb{Z}_q^{m \times n} \times \mathbb{Z}_q^m$.

A The present noise makes S-LWE a hard problem.

A The norm restriction on e makes D-LWE a hard problem!

Constitution Exercise: S-LWE_{δ} equals BDD_{δ} in the special lattice $\Lambda_q(\mathbf{A})$.

rightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for D-LWE_{δ}, assuming $\delta \cdot \beta \ll q$.

rightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for D-LWE_{δ}, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (A, b), our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for $\|\mathbf{e}\|_2 \leq \delta$ or 2) $\mathbf{b} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^m)$.

rightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for D-LWE_{δ}, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (\mathbf{A}, \mathbf{b}) , our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for $\|\mathbf{e}\|_2 \leq \delta$ or 2) $\mathbf{b} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^m)$.

Forward A to SIS-solver and receive back z such that $\mathbf{A}^T \mathbf{z} = \mathbf{0} \mod q$ and $\|\mathbf{z}\|_2 \leq \beta$.

rightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for D-LWE_{δ}, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (\mathbf{A}, \mathbf{b}) , our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for $\|\mathbf{e}\|_2 \leq \delta$ or 2) $\mathbf{b} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^m)$.

Forward A to SIS-solver and receive back z such that $\mathbf{A}^T \mathbf{z} = \mathbf{0} \mod q$ and $\|\mathbf{z}\|_2 \leq \beta$.

Compute $\|\mathbf{b}^T \mathbf{z}\|_{\infty}$. If the norm is $\ll q$, claim that we are in case 1). Else, claim that we are in case 2).

rightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for D-LWE_{δ}, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (\mathbf{A}, \mathbf{b}) , our goal is to decide whether 1) $\mathbf{b} = \mathbf{As} + \mathbf{e}$ for $\|\mathbf{e}\|_2 \leq \delta$ or 2) $\mathbf{b} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^m)$.

Forward A to SIS-solver and receive back z such that $\mathbf{A}^T \mathbf{z} = \mathbf{0} \mod q$ and $\|\mathbf{z}\|_2 \leq \beta$.

Compute $\|\mathbf{b}^T \mathbf{z}\|_{\infty}$. If the norm is $\ll q$, claim that we are in case 1). Else, claim that we are in case 2).

Case 1) $\mathbf{b} = \mathbf{A}\mathbf{s} + \mathbf{e}$, thus $\mathbf{b}^T \mathbf{z} = \mathbf{s}^T \mathbf{A}^T \mathbf{z} + \mathbf{e}^T \mathbf{z} = \mathbf{e}^T \mathbf{z} \mod q$. Thus $\|\mathbf{b}^T \mathbf{z}\|_{\infty} \le \|\mathbf{e}^T\|_{\infty} \cdot \|\mathbf{z}\|_{\infty} \le \delta \cdot \beta \ll q$.

Case 2) **b** uniform, so is $\mathbf{b}^T \mathbf{z}$ and hence $\|\mathbf{b}^T \mathbf{z}\|_{\infty}$ with high chances larger than $\delta\beta$.

Part 3:

What is lattice-based cryptography?

Collision-Resistant Hash Function from SIS [Ajt96]

A function $f: Domain \rightarrow Range$ is called collision-resistant if it is hard to output two elements $\mathbf{x}, \mathbf{x}' \in Domain$ such that

 $f(\mathbf{x}) = f(\mathbf{x}') \text{ and } \mathbf{x} \neq \mathbf{x}'.$

Collision-Resistant Hash Function from SIS [Ajt96]

A function $f: Domain \rightarrow Range$ is called collision-resistant if it is hard to output two elements $\mathbf{x}, \mathbf{x}' \in Domain$ such that

$$f(\mathbf{x}) = f(\mathbf{x}')$$
 and $\mathbf{x} \neq \mathbf{x}'$.

Set $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$ with $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}^T \mathbf{x} \mod q$ for $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Collision-Resistant Hash Function from SIS [Ajt96]

A function $f: Domain \rightarrow Range$ is called collision-resistant if it is hard to output two elements $\mathbf{x}, \mathbf{x}' \in Domain$ such that

$$f(\mathbf{x}) = f(\mathbf{x}')$$
 and $\mathbf{x} \neq \mathbf{x}'$.

Set $f_{\mathbf{A}} \colon \{0,1\}^m \to \mathbb{Z}_q^n$ with $f_{\mathbf{A}}(\mathbf{x}) = \mathbf{A}^T \mathbf{x} \mod q$ for $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{m \times n})$.

Constant Exercise: Assuming SIS is hard to solve for $\beta = \sqrt{m}$, then f_A is collision-resistant

Hint:
$$\mathbf{x} \neq \mathbf{x}' \in \{0, 1\}^m \Leftrightarrow \mathbf{0} \neq \mathbf{x} - \mathbf{x}' \in \{-1, 0, 1\}^m$$

 $\mathbf{A}^T \mathbf{x} = \mathbf{A}^T \mathbf{x}' \Leftrightarrow \mathbf{A}^T (\mathbf{x} - \mathbf{x}') = 0$

Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi = (KGen, Enc, Dec)$ consists of three algorithms:

- KGen $(1^{\lambda}) \rightarrow (sk, pk)$ λ security parameter
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- Dec(sk, ct) = m'

Correctness: Dec(sk, Enc(pk, m)) = m during an honest execution

Semantic Security: $Enc(pk, m_0)$ is indistinguishable from $Enc(pk, m_1)$ (IND-CPA)

Let χ be distribution on \mathbb{Z} .

- KGen (1^{λ}) :
 - $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - Output sk = s and $pk = (\mathbf{A}, \mathbf{b})$

Let χ be distribution on \mathbb{Z} .

- KGen(1^λ):

 A ← Unif(Z_q^{n×n}) and s, e ← χⁿ
 b = As + e mod q
 Output sk = s and pk = (A, b)

 Enc(pk, m ∈ {0, 1}):

 r, f ← χⁿ and f' ← χ
 u = rA + f
 v = rb + f' + ⌊q/2⌋ ⋅ m
 - Output $ct = (\mathbf{u}, v)$

Let χ be distribution on \mathbb{Z} .

• KGen (1^{λ}) : • $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$ $\mathbf{A} \quad \mathbf{s} + \mathbf{e} = \mathbf{b}$ Α **,** $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$ • Output sk = s and pk = (A, b)• $Enc(pk, m \in \{0, 1\})$: • $\mathbf{r}, \mathbf{f} \leftarrow \chi^n$ and $f' \leftarrow \chi$ f' +Α r m $\mathbf{v} = \mathbf{r}\mathbf{A} + \mathbf{f}$ $\triangleright v = \mathbf{rb} + f' + |q/2| \cdot m$ • Output $ct = (\mathbf{u}, v)$ Dec(sk, ct): • If $v - \mathbf{us}$ is closer to 0 than to q/2, output m' = 0

► Else output m' = 1

Correctness:

$$v - \mathbf{us} = \mathbf{r}(\mathbf{As} + \mathbf{e}) + f' + \lfloor q/2 \rfloor \cdot m - (\mathbf{rA} + \mathbf{f})\mathbf{s}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\text{ciphertext noise}} + \lfloor q/2 \rfloor m$$
$$\underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\text{ciphertext noise}} + \lfloor q/2 \rfloor m$$

Decryption succeeds if $\left|\ast\right| < q/8$

Correctness: Let χ be *B*-bounded with $2nB^2 + B < q/8$

$$v - \mathbf{us} = \mathbf{r}(\mathbf{As} + \mathbf{e}) + f' + \lfloor q/2 \rfloor \cdot m - (\mathbf{rA} + \mathbf{f})\mathbf{s}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\mathbf{k}} + \lfloor q/2 \rfloor m$$
$$* \text{ ciphertext noise}$$

Decryption succeeds if $|\ast| < q/8$

$$|*| = |\mathbf{r}\mathbf{e} + f' - \mathbf{fs}| \le \|\mathbf{r}\|_2 \cdot \|\mathbf{e}\|_2 + \|\mathbf{f}\|_2 \cdot \|\mathbf{s}\|_2 + |f'| \le 2(\sqrt{n}B \cdot \sqrt{n}B) + B < q/8$$

Semantic Security: Assume hardness of decision LWE

- 1. replace \mathbf{b} by uniform random vector
- 2. replace non-message part (*) by uniform random vector
- 3. then the message is completely hidden

Kyber - Selected for Standardization by NIST

rightarrow Kyber = the previous construction + several improvements

Main improvements:

- 1. Structured LWE variant (most important)
- 2. LWE secret and noise from centered binomial distribution
- 3. Pseudorandomness for distributions
- 4. Ciphertext compression

Sources:

- Website of Kyber: https://pq-crystals.org/kyber/
- Latest specifications [link]
- Tutorial by V. Lyubashevsky [link]

Part 4:

What are (my) current challenges?

Re-Reminder: Public Key Encryption (PKE)

PKE scheme:

- $\mathsf{KGen}(1^{\lambda}) \to (\mathsf{pk},\mathsf{sk})$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct} \stackrel{\bullet}{\rightharpoonup}$
- $\mathsf{Dec}(\mathsf{sk},\mathsf{ct}) \to m'$

Properties:

- Correctness
- Semantic security

 λ security parameter

Re-Reminder: Public Key Encryption (PKE)

PKE scheme:

- $\mathsf{KGen}(1^{\lambda}) \to (\mathsf{pk}, \mathsf{sk})$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct} \stackrel{\bullet}{\rightharpoonup}$
- $\bullet \ \operatorname{Dec}(\mathsf{sk},\mathsf{ct}) \to m' \ \fbox{}$

Properties:

- Correctness
- Semantic security

 λ security parameter

Threshold Public Key Encryption (TPKE)

t-out-of-n Threshold PKE scheme:

- $\mathsf{KGen}(1^{\lambda}) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_n)$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- $\mathsf{PartDec}(\mathsf{sk}_i, \mathsf{ct}') \to d_i$
- Combine $(\{d_i\}_{i\in S}) \to m'$

secret sharing

$$i \in \{1, \dots, n\}$$
$$S \subset \{1, \dots, n\}$$

*https://csrc.nist.gov/projects/threshold-cryptography

Lattice-Based Cryptography

Threshold Public Key Encryption (TPKE)

t-out-of-n Threshold PKE scheme:

- $\mathsf{KGen}(1^{\lambda}) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_n)$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- $\mathsf{PartDec}(\mathsf{sk}_i, \mathsf{ct}') \to d_i$
- Combine $(\{d_i\}_{i\in S}) \to m'$

secret sharing

 $i \in \{1, \dots, n\}$ $S \subset \{1, \dots, n\}$

^{*}https://csrc.nist.gov/projects/threshold-cryptography

Threshold Public Key Encryption (TPKE)

 $t\text{-}\mathsf{out}\text{-}\mathsf{of}\text{-}n$ Threshold PKE scheme:

- $\mathsf{KGen}(1^{\lambda}) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_n)$
- $\bullet \; \operatorname{Enc}(\mathsf{pk},m) \to \mathsf{ct}$
- $\mathsf{PartDec}(\mathsf{sk}_i, \mathsf{ct}') \to d_i$
- Combine $(\{d_i\}_{i\in S}) \to m'$

Properties:

- Correctness
- Partial decryption security
- Semantic security

Applications:

- Storing sensitive data
- Electronic voting protocols
- Multiparty computations

secret sharing

 $i \in \{1, \dots, n\}$ $S \subset \{1, \dots, n\}$

for |S| > t recover correct message for $|S| \leq t$ no information is leaked

NIST's call*

24/33

 \rightarrow Chris yesterday, Daniel later

^{*}https://csrc.nist.gov/projects/threshold-cryptography

Reminder: PKE from LWE

- $\mathsf{KGen}(1^{\lambda})$:
 - $\blacktriangleright \ \mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n}) \text{ and } \mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\blacktriangleright \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - \blacktriangleright Output sk = s and pk = (\mathbf{A},\mathbf{b})
- Enc(pk, $m \in \{0, 1\}$): • $\mathbf{r}, \mathbf{f} \leftarrow \chi^n$ and $f' \leftarrow \chi$ • $\mathbf{u} = \mathbf{r}\mathbf{A} + \mathbf{f}$ • $v = \mathbf{r}\mathbf{b} + f' + \lfloor q/2 \rfloor \cdot m$
 - Output $ct = (\mathbf{u}, v)$
- Dec(sk, ct):
 - If $v \mathbf{us}$ is closer to 0 than to q/2, output m' = 0
 - ▶ Else output m' = 1

Reminder: PKE from LWE

- $\mathsf{KGen}(1^{\lambda})$:
 - $\blacktriangleright \ \mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n}) \text{ and } \mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - \blacktriangleright Output sk = s and pk = (\mathbf{A},\mathbf{b})
- Enc(pk, $m \in \{0, 1\}$): • $\mathbf{r}, \mathbf{f} \leftarrow \chi^n$ and $f' \leftarrow \chi$ • $\mathbf{u} = \mathbf{r}\mathbf{A} + \mathbf{f}$ • $v = \mathbf{r}\mathbf{b} + f' + \lfloor q/2 \rfloor \cdot m$
 - Output $ct = (\mathbf{u}, v)$

- Dec(sk, ct):
 - If $v \mathbf{us}$ is closer to 0 than to q/2, output m' = 0
 - ▶ Else output m' = 1

In order to thresholdize it: modify KGen and replace Dec by PartDec and Combine

(Enc stays the same)

Full-Threshold PKE from LWE, First Trial

(n-out-of-n)

- $\mathsf{KGen}(1^{\lambda})$:
 - $\blacktriangleright \ \mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n}) \text{ and } \mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\blacktriangleright \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - $\mathbf{s}_1, \ldots, \mathbf{s}_{n-1} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^n)$
 - $\mathbf{s}_n = \mathbf{s} \sum_{i=1}^{n-1} \mathbf{s}_i$
 - Output $sk_i = s_i$ and pk = (A, b)
- PartDec($\mathsf{sk}_i, (\mathbf{u}, v)$):
 - Output d_i = us_i
- Combine (d_1, \ldots, d_n) :
 - \blacktriangleright $d = \sum_{i=1}^{n} d_i$
 - If v d is closer to 0 than to q/2, output m' = 0
 - ► Else output m' = 1

Full-Threshold PKE from LWE, First Trial

- KGen (1^{λ}) :
 - $\blacktriangleright \ \mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n}) \text{ and } \mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - $\mathbf{s}_1, \ldots, \mathbf{s}_{n-1} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^n)$
 - $\mathbf{s}_n = \mathbf{s} \sum_{i=1}^{n-1} \mathbf{s}_i$

• Output
$$sk_i = s_i$$
 and $pk = (A, b)$

- PartDec(sk_i, (u, v)):
 Output d_i = us_i
- Combine (d_1, \ldots, d_n) :
 - $d = \sum_{i=1}^{n} d_i$
 - If v d is closer to 0 than to q/2, output m' = 0
 - ▶ Else output m' = 1

Correctness: given d_1, \ldots, d_n

$$v - \sum_{i=1}^{n} \mathbf{us}_{i} = v - \mathbf{u} \sum_{i=1}^{n} \mathbf{s}_{i} = v - \mathbf{us}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{*} + \lfloor q/2 \rfloor m$$
$$* \operatorname{ciphertext noise}$$

Decryption succeeds if |*| < q/8

Full-Threshold PKE from LWE, First Trial

- KGen (1^{λ}) :
 - $\blacktriangleright \ \mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n}) \text{ and } \mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\blacktriangleright \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - $\mathbf{s}_1, \ldots, \mathbf{s}_{n-1} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^n)$
 - $\mathbf{s}_n = \mathbf{s} \sum_{i=1}^{n-1} \mathbf{s}_i$

• Output
$$sk_i = s_i$$
 and $pk = (A, b)$

- PartDec(sk_i, (u, v)):
 Output d_i = us_i
- Combine (d_1, \ldots, d_n) :
 - $d = \sum_{i=1}^{n} d_i$
 - If v d is closer to 0 than to q/2, output m' = 0
 - ▶ Else output m' = 1

Correctness: given d_1, \ldots, d_n

$$v - \sum_{i=1}^{n} \mathbf{us}_{i} = v - \mathbf{u} \sum_{i=1}^{n} \mathbf{s}_{i} = v - \mathbf{us}$$
$$= \underbrace{\mathbf{re} + f' - \mathbf{fs}}_{\text{ ciphertext noise}} + \lfloor q/2 \rfloor m$$

A But (*) leaks information about sk = s!

Full-Threshold PKE from LWE [BD10]

- KGen (1^{λ}) :
 - $\mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n})$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^n$
 - $\blacktriangleright \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$
 - $\mathbf{s} = \sum_{i=1}^{n} \mathbf{s}_i$
 - Output $\mathbf{s}\mathbf{k}_i = \mathbf{s}_i$ and $\mathsf{pk} = (\mathbf{A}, \mathbf{b})$
- $PartDec(sk_i, ct)$:
 - ▶ Sample $e_i \leftarrow D_{flood}$
 - Output $d_i = \mathbf{us}_i + e_i$
- Combine (d_1, \ldots, d_n) :
 - $d = \sum_{i=1}^{n} d_i$
 - If v d is closer to 0 than to q/2, output m' = 0
 - ▶ Else output m' = 1

Full-Threshold PKE from LWE [BD10]

• KGen (1^{λ}) :

- $\blacktriangleright \ \mathbf{A} \leftarrow \mathsf{Unif}(\mathbb{Z}_q^{n \times n}) \text{ and } \mathbf{s}, \mathbf{e} \leftarrow \chi^n$
- $\blacktriangleright \mathbf{b} = \mathbf{As} + \mathbf{e} \mod q$

$$\mathbf{s} = \sum_{i=1}^{n} \mathbf{s}_i$$

- Output $sk_i = s_i$ and pk = (A, b)
- $PartDec(sk_i, ct)$:
 - ▶ Sample $e_i \leftarrow D_{flood}$
 - Output $d_i = \mathbf{us}_i + \mathbf{e}_i$
- Combine (d_1, \ldots, d_n) :

$$d = \sum_{i=1}^{n} d_i$$

- If v d is closer to 0 than to q/2, output m' = 0
- Else output m' = 1

Correctness:

$$v - \sum_{i=1}^{n} \mathbf{u} \mathbf{s}_{i} + e_{i} = v - \mathbf{u} \sum_{i=1}^{n} \mathbf{s}_{i} + e_{i} = v - \mathbf{u} \mathbf{s} + \sum_{i=1}^{n} e_{i}$$
$$= \mathbf{r} \mathbf{e} + f' - \mathbf{f} \mathbf{s} + \sum_{i=1}^{n} e_{i} + \lfloor q/2 \rfloor m$$

Decryption succeeds if |*| < q/8

Put under the carpet for today ...

▲ It is non-trivial to go from full-threshold to arbitrary threshold PKE if you are working with lattices ;-)

n-out-of-n threshold

$$\sum_{i=1}^{n} e_i$$

 $t ext{-out-of-}n \text{ threshold}$

 $\sum_{i\in S} \frac{\lambda_i}{k_i} e_i$

still needs to be small

? There are solutions, but not very efficient for large *n*.

Partial Decryption Security

Two worlds:

- Real: $e_{\mathsf{ct}} = \mathbf{re} + f' \mathbf{fs}$ and $e_{flood} = \sum_i e_i$
- Simulated: only $e_{flood} = \sum_i e_i$

How close are they? [BD10] measures with statistical distance Δ

$$\Delta(\mathsf{Real},\mathsf{Sim}) \leq \Delta(e_{flood} + e_{\mathsf{ct}}, e_{flood}) \leq \mathsf{negl}(\lambda)$$

Partial Decryption Security

Two worlds:

- Real: $e_{ct} = \mathbf{re} + f' \mathbf{fs}$ and $e_{flood} = \sum_i e_i$
- Simulated: only $e_{flood} = \sum_i e_i$

How close are they? [BD10] measures with statistical distance Δ

$$\Delta(\mathsf{Real},\mathsf{Sim}) \le \Delta(e_{flood} + e_{\mathsf{ct}}, e_{flood}) \le \mathsf{negl}(\lambda)$$

Problem:

- $\bullet ~ \|e_{flood}\|$ needs to be super-polynomially larger than $\|e_{\mathsf{ct}}\|$
- LWE-based constructions: $\|e_{flood}\|\sim$ LWE modulus q and $\|e_{\rm ct}\|\sim$ LWE noise e, thus super-polynomial modulus-noise ratio
 - Larger parameters
 - Easier problem

$$\begin{array}{|c|c|c|c|} \hline \mathbf{A} & \mathbf{S} & \\ \hline \mathbf{A} & \mathbf{S} & \\ & + & \mathbf{e} & \mod q \end{array}$$

Partial Decryption Security

Two worlds:

- Real: $e_{ct} = \mathbf{re} + f' \mathbf{fs}$ and $e_{\mathcal{F}}$
- Simulated: only $e_{flood} =$

Idea:
 change the
 measure!
 [BLR⁺18]

How close are they? [BD10] measures with statistical distance Δ

$$\Delta(\mathsf{Real},\mathsf{Sim}) \le \Delta(e_{flood} + e_{\mathsf{ct}}, e_{flood}) \le \mathsf{negl}(\lambda)$$

Problem:

- $\bullet ~ \|e_{flood}\|$ needs to be super-polynomially larger than $\|e_{\mathsf{ct}}\|$
- LWE-based constructions: $\|e_{flood}\|\sim$ LWE modulus q and $\|e_{\rm ct}\|\sim$ LWE noise e, thus super-polynomial modulus-noise ratio
 - Larger parameters
 - Easier problem

$$\begin{array}{|c|c|c|c|} \hline \mathbf{A} & \mathbf{S} & \\ \hline \mathbf{A} & \mathbf{S} & \\ & + & \mathbf{e} & \mod q \end{array}$$

Improved Noise Flooding via Rényi Divergence 1/2

Let P, Q be discrete probability distributions

In [BD10]: Statistical Distance $\Delta(P,Q) = \frac{1}{2}\sum_{x\in \mathrm{Supp}(P)} |P(x) - Q(x)|$

In [BS23]: Rényi Divergence

$$\mathsf{RD}(P,Q) = \sum_{\substack{x \in \mathbf{Supp}(P) \\ \subset \operatorname{Supp}(Q)}} \frac{P(x)^2}{Q(x)}$$

Improved Noise Flooding via Rényi Divergence 1/2

Let P, Q be discrete probability distributions

In [BD10]: Statistical Distance $\Delta(P,Q) = \frac{1}{2} \sum_{x \in \text{Supp}(P)} |P(x) - Q(x)|$

In [BS23]: Rényi Divergence

$$\mathsf{RD}(P,Q) = \sum_{\substack{x \in \mathrm{Supp}(P) \\ \subset \mathrm{Supp}(Q)}} \frac{P(x)^2}{Q(x)}$$

Both fulfill the probability preservation property for an event E:

- Q(E) negligible $\Rightarrow P(E)$ negligible
- $\Delta(P,Q) =$ ' negligible and RD(P,Q) =' constant

Improved Noise Flooding via Rényi Divergence 2/2

Two worlds:

- Real: e_{ct} and e_{flood}
- Simulated: only e_{flood}

How close are they?

$$\Delta(\text{Real}, \text{Sim}) \leq \Delta(e_{flood} + e_{ct}, e_{flood}) \leq \text{negl}(\lambda)$$

RD(Real, Sim) \leq RD($e_{flood} + e_{ct}, e_{flood}) \leq \text{constant}$

Advantage:

- $\bullet ~ \|e_{flood}\|$ only needs to be polynomially larger than $\|e_{\mathsf{ct}}\|$
- LWE-based constructions: polynomial modulus-noise ratio

Improved Noise Flooding via Rényi Divergence 2/2

Two worlds:

- Real: e_{ct} and e_{flood}
- Simulated: only e_{flood}

How close are they?

 $\Delta(\text{Real}, \text{Sim}) \leq \Delta(e_{flood} + e_{ct}, e_{flood}) \leq \text{negl}(\lambda)$ RD(Real, Sim) $\leq \text{RD}(e_{flood} + e_{ct}, e_{flood}) \leq \text{constant}$

Advantage:

- $\bullet ~ \|e_{flood}\|$ only needs to be polynomially larger than $\|e_{\mathsf{ct}}\|$
- LWE-based constructions: polynomial modulus-noise ratio

Disadvantage:

- 1) Rényi divergence depends on the number of issued partial decryptions
 - \rightarrow from simulation-based to game-based security notion
- 2) Works well with search problems, not so well with decision problems

Two worlds:

- Real: f(sk) and e_{flood}
- Simulated: only *e*_{flood}

How close are they?

 $\Delta(\mathsf{Real},\mathsf{Sim}) \le \Delta(e_{flood} + f(\mathsf{sk}), e_{flood}) \le \mathsf{negl}(\lambda)$

 $\mathsf{RD}(\mathsf{Real},\mathsf{Sim}) \leq \mathsf{RD}(e_{\mathit{flood}} + f(\mathsf{sk}), e_{\mathit{flood}}) \leq \mathsf{constant}$

Two worlds:

- Real: f(sk) and e_{flood}
- Simulated: only e_{flood}

How close are they?

$$\begin{split} &\Delta(\mathsf{Real},\mathsf{Sim}) \leq \Delta(e_{flood} + f(\mathsf{sk}), e_{flood}) \leq \mathsf{negl}(\lambda) \\ &\mathsf{RD}(\mathsf{Real},\mathsf{Sim}) \leq \mathsf{RD}(e_{flood} + f(\mathsf{sk}), e_{flood}) \leq \mathsf{constant} \end{split}$$

Examples:

Threshold decryption: f(sk) is the ciphertext noise [BS23]
Signatures schemes: f(sk) is part of a signature [Raccoon]

Two worlds:

- Real: f(sk) and e_{flood}
- Simulated: only e_{flood}

How close are they?

$$\begin{split} &\Delta(\mathsf{Real},\mathsf{Sim}) \leq \Delta(e_{flood} + f(\mathsf{sk}), e_{flood}) \leq \mathsf{negl}(\lambda) \\ &\mathsf{RD}(\mathsf{Real},\mathsf{Sim}) \leq \mathsf{RD}(e_{flood} + f(\mathsf{sk}), e_{flood}) \leq \mathsf{constant} \end{split}$$

Examples:

- Threshold decryption: f(sk) is the ciphertext noise
- Signatures schemes: f(sk) is part of a signature

[BS23] [Raccoon]

Alternative Approaches:

- Rejection Sampling \rightarrow Dilithium
- LWE with hints aka just accept the leakage

Two worlds:

- Real: f(sk) and e_{flood}
- Simulated: only e_{flood}

How close are they?

$$\begin{split} &\Delta(\mathsf{Real},\mathsf{Sim}) \leq \Delta(e_{flood} + f(\mathsf{sk}), e_{flood}) \leq \mathsf{negl}(\lambda) \\ &\mathsf{RD}(\mathsf{Real},\mathsf{Sim}) \leq \mathsf{RD}(e_{flood} + f(\mathsf{sk}), e_{flood}) \leq \mathsf{constant} \end{split}$$

Examples:

- Threshold decryption: f(sk) is the ciphertext noise
- Signatures schemes: f(sk) is part of a signature

[Raccoon]

[BS23]

65 We don't yet understand very well when which approach is **optimal 99**

Alternative Approaches:

- Rejection Sampling \rightarrow Dilithium
- LWE with hints aka just accept the leakage

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What particular challenges are!

Any questions or interested in my research?

- **P** Reach out to me today or at Latincrypt
- Write me an e-mail

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What particular challenges are!

Any questions or interested in my research?

- **P** Reach out to me today or at Latincrypt
- Write me an e-mail

¡Muchas Gracias!

Miklós Ajtai.

Generating hard instances of lattice problems (extended abstract). In *STOC*, pages 99–108. ACM, 1996.

Rikke Bendlin and Ivan Damgård.

Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems. In *TCC*, volume 5978 of *Lecture Notes in Computer Science*, pages 201–218. Springer, 2010.

-

Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien Stehlé, and Ron Steinfeld.

Improved security proofs in lattice-based cryptography: Using the rényi divergence rather than the statistical distance.

J. Cryptol., 31(2):610-640, 2018.

Katharina Boudgoust and Peter Scholl.

Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus.

IACR Cryptol. ePrint Arch., page 16, 2023.

Oded Regev.

On lattices, learning with errors, random linear codes, and cryptography. In *STOC*, pages 84–93. ACM, 2005.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.

SIAM J. Comput., 26(5):1484–1509, 1997.