Lattice-Based Cryptography
 Criptografía basada en retículos

where to start and where to go next

Katharina Boudgoust

until 2023	from 2024
Postdoc	Researcher CNRS
Aarhus University	LIRMM Montpellier
Denmark	France

Overview of Today's Lecture

Questions we are trying to answer today:

- Part 1: What are lattices?
- Part 2: What are lattice problems?
- Part 3: What is lattice-based cryptography?
- Part 4: What are the current challenges?
where to start
whete to go next

E References:

- Crash Course Spring 2022 [lecture notes]
- The Lattice Club [link]

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarithm \rightarrow Arantxa's proof system
- Factoring

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarith \longrightarrow Arantxa's proof system

A \exists poly-time quantum algorithm [Sho97]

Quantum-resistant candidates:

- Codes
- Lattices
- Isogenies
- Multivariate systems
- ?

Context

The security in public-key cryptography relies on presumably hard mathematical problems.

Currently used problems:

- Discrete logarith \rightarrow Arantxa's proof system

A \exists poly-time quantum algorithm [Sho97]

Quantum-resistant candidates:

- Codes
- Lattices \rightarrow now
- Isogenies \rightarrow later with Chloe
- Multivariate systems
- ?

Fernando (INCA)

US National Institute of Standards and Technology (NIST) Project $\bar{\nabla}$

- 2016: start of NIST's post-quantum cryptography project*
- 2022: selection of 4 schemes, 3 of them relying on lattice problems
- Public Key Encryption:
- Kyber

Digital Signature:

- Dilithium
- Falcon SFalcon
- SPHINCS+

SPHIMS

Lattice-based cryptography plays a leading role in designing post-quantum cryptography.

[^0]Part 1:
What is a lattice?

Euclidean Lattices

An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^{n}.

Euclidean Lattices

\mathbb{B} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^{n}.

- additive subgroup: $\mathbf{0} \in \Lambda$, and for all $\mathbf{x}, \mathbf{y} \in \Lambda$ it holds $\mathbf{x}+\mathbf{y},-\mathbf{x} \in \Lambda$;
- discrete: every $\mathbf{x} \in \Lambda$ has a neighborhood in which \mathbf{x} is the only lattice point.

$$
\exists \varepsilon>0 \text { such that } \mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda=\{\mathbf{x}\}
$$

Euclidean Lattices

\mathbb{B} An Euclidean lattice Λ is a discrete additive subgroup of \mathbb{R}^{n}.

- additive subgroup: $\mathbf{0} \in \Lambda$, and for all $\mathbf{x}, \mathbf{y} \in \Lambda$ it holds $\mathbf{x}+\mathbf{y},-\mathbf{x} \in \Lambda$;
- discrete: every $\mathbf{x} \in \Lambda$ has a neighborhood in which \mathbf{x} is the only lattice point.

$$
\exists \varepsilon>0 \text { such that } \mathcal{B}(\mathbf{x}, \varepsilon) \cap \Lambda=\{\mathbf{x}\}
$$

There exists a finite basis $\mathbf{B}=\left(\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right) \subset \mathbb{R}^{n}$ such that

$$
\Lambda(\mathbf{B})=\left\{\sum_{i=1}^{n} z_{i} \mathbf{b}_{i}: z_{i} \in \mathbb{Z}\right\}
$$

- n is the rank of Λ

Euclidean Lattices

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ, i.e.,

$$
\Lambda(\mathbf{B})=\left\{\sum_{i=1}^{n} z_{i} \mathbf{b}_{i}: z_{i} \in \mathbb{Z}\right\}=\left\{\mathbf{B} \mathbf{z}: \mathbf{z} \in \mathbb{Z}^{n}\right\}
$$

Euclidean Lattices

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a basis for Λ, i.e.,

$$
\Lambda(\mathbf{B})=\left\{\sum_{i=1}^{n} z_{i} \mathbf{b}_{i}: z_{i} \in \mathbb{Z}\right\}=\left\{\mathbf{B} \mathbf{z}: \mathbf{z} \in \mathbb{Z}^{n}\right\} .
$$

- $\mathbf{U} \in \mathbb{Z}^{n \times n}$ unimodular, then $\widetilde{\mathbf{B}}=\mathbf{B} \cdot \mathbf{U}$ also a basis of Λ
$\operatorname{det}(\mathbf{U})= \pm 1$
- $\operatorname{det}(\Lambda):=|\operatorname{det}(\mathbf{B})|$

Dual Lattices

The dual of a lattice $\Lambda \subset \mathbb{R}^{n}$ is defined as

$$
\Lambda^{\vee}=\left\{\mathbf{w} \in \mathbb{R}^{n}:\langle\mathbf{w}, \mathbf{x}\rangle \in \mathbb{Z} \forall \mathbf{x} \in \Lambda\right\} .
$$

Dual Lattices

The dual of a lattice $\Lambda \subset \mathbb{R}^{n}$ is defined as

$$
\Lambda^{\vee}=\left\{\mathbf{w} \in \mathbb{R}^{n}:\langle\mathbf{w}, \mathbf{x}\rangle \in \mathbb{Z} \forall \mathbf{x} \in \Lambda\right\} .
$$

- if \mathbf{B} a basis for Λ, then $\left(\mathbf{B}^{T}\right)^{-1}$ a basis for Λ^{\vee}
- $\operatorname{det}\left(\Lambda^{\vee}\right)=\operatorname{det}(\Lambda)^{-1}$

Lattice Minimum \& Special Lattices

The minimum of a lattice $\Lambda \subset \mathbb{R}^{n}$ is defined as

$$
\lambda_{1}(\Lambda)=\min _{\mathbf{x} \in \Lambda \backslash\{\mathbf{0}\}}\|\mathbf{x}\|_{2} .
$$

- Minkowski: $\lambda_{1}(\Lambda) \leq \sqrt{n} \cdot \operatorname{det}(\Lambda)^{1 / n}$
- Exarcise: $\lambda_{1}(\Lambda) \cdot \lambda_{1}\left(\Lambda^{\vee}\right) \leq n$

Lattice Minimum \& Special Lattices

The minimum of a lattice $\Lambda \subset \mathbb{R}^{n}$ is defined as

$$
\lambda_{1}(\Lambda)=\min _{\mathbf{x} \in \Lambda \backslash\{\mathbf{0}\}}\|\mathbf{x}\|_{2}
$$

- Minkowski: $\lambda_{1}(\Lambda) \leq \sqrt{n} \cdot \operatorname{det}(\Lambda)^{1 / n}$
- 撚 Exercise: $\lambda_{1}(\Lambda) \cdot \lambda_{1}\left(\Lambda^{\vee}\right) \leq n$

Let $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ for some $n, m, q \in \mathbb{N}$ with $n \leq m$

$$
\begin{aligned}
\Lambda_{q}(\mathbf{A}) & =\left\{\mathbf{y} \in \mathbb{Z}^{m}: \mathbf{y}=\mathbf{A s} \bmod q \text { for some } \mathbf{s} \in \mathbb{Z}^{n}\right\} \\
\Lambda_{q}^{\perp}(\mathbf{A}) & =\left\{\mathbf{y} \in \mathbb{Z}^{m}: \mathbf{A}^{T} \mathbf{y}=\mathbf{0} \bmod q\right\}
\end{aligned}
$$

- 唁 Exercise: $\Lambda_{q}^{\perp}(\mathbf{A})=q \cdot \Lambda_{q}(\mathbf{A})^{\vee}$

Part 2:

What are lattice problems?

Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^{n}$ of rank n.
The shortest vector problem (SVP) asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$
\|\mathbf{w}\|_{2}=\lambda_{1}(\Lambda)
$$

Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^{n}$ of rank n.
The approximate shortest vector problem $\left(\mathrm{SVP}_{\gamma}\right)$ for $\gamma \geq 1$ asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$
\|\mathbf{w}\|_{2} \leq \gamma \lambda_{1}(\Lambda)
$$

Shortest Vector Problem

Given a lattice $\Lambda \in \mathbb{R}^{n}$ of rank n.
The approximate shortest vector problem $\left(\mathrm{SVP}_{\gamma}\right)$ for $\gamma \geq 1$ asks to find a vector $\mathbf{w} \in \Lambda$ such that

$$
\|\mathbf{w}\|_{2} \leq \gamma \lambda_{1}(\Lambda)
$$

The complexity of SVP_{γ} increases with n, but decreases with γ.

Conjecture:

There is no polynomial-time classical or quantum algorithm that solves SVP_{γ} to within polynomial factors.

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^{n}$ of rank n and a $\operatorname{target} \mathrm{t} \in \mathbb{R}^{n}$ such $\operatorname{dist}(\Lambda, \mathbf{t}) \leq \delta<\lambda_{1}(\Lambda)$.

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^{n}$ of rank n and a

Bounded Distance Decoding

Given a lattice $\Lambda \in \mathbb{R}^{n}$ of rank n and a

The complexity of BDD_{δ} increases with n and with δ.

Conjecture:
There is no polynomial-time classical or quantum algorithm that solves BDD_{δ} to within polynomial factors.

Short Integer Solution [Ajt96]

Given a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ sampled uniformly at random and bound $\beta>0$.

Short Integer Solution [Ajt96]

Given a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ sampled uniformly at random and bound $\beta>0$.

The short integer solution $\left(\mathrm{SIS}_{\beta}\right)$ problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^{m}$ of norm $0<\|\mathbf{z}\|_{2} \leq \beta$ such that

$$
\mathbf{A}^{T} \mathbf{z}=\mathbf{0} \bmod q .
$$

Short Integer Solution [Ajt96]

Given a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ sampled uniformly at random and bound $\beta>0$.

The short integer solution $\left(\mathrm{SIS}_{\beta}\right)$ problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^{m}$ of norm $0<\|\mathbf{z}\|_{2} \leq \beta$ such that

$$
\mathbf{A}^{T} \mathbf{z}=\mathbf{0} \bmod q
$$

A The norm restriction makes it a hard problem!

Short Integer Solution [Ajt96]

Given a matrix $\mathbf{A} \in \mathbb{Z}_{q}^{m \times n}$ sampled uniformly at random and bound $\beta>0$.

The short integer solution $\left(\mathrm{SIS}_{\beta}\right)$ problem asks to find a vector $\mathbf{z} \in \mathbb{Z}^{m}$ of norm $0<\|\mathbf{z}\|_{2} \leq \beta$ such that

$$
\mathbf{A}^{T} \mathbf{z}=\mathbf{0} \bmod q
$$

A The norm restriction makes it a hard problem!

Recall:

$$
\Lambda_{q}^{\perp}(\mathbf{A})=\left\{\mathbf{y} \in \mathbb{Z}^{m}: \mathbf{A}^{T} \mathbf{y}=\mathbf{0} \bmod q\right\}
$$

$\sim \operatorname{SIS}_{\beta}$ equals $\operatorname{SVP}_{\gamma}$ in the special lattice $\Lambda_{q}^{\perp}(\mathbf{A})$ for $\beta=\gamma \cdot \lambda_{1}\left(\Lambda_{q}^{\perp}(\mathbf{A})\right)$

Learning With Errors [Reg05]

Given a matrix $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m \times n}\right)$.
Given a vector $\mathbf{b} \in \mathbb{Z}_{q}^{m}$, where $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ sampled from distribution D_{s} and
- noise/error $\mathbf{e} \in \mathbb{Z}^{m}$ sampled from distribution D_{e} such that $\|\mathbf{e}\|_{2} \leq \delta \ll q$.

Learning With Errors [Reg05]

Given a matrix $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m \times n}\right)$.
Given a vector $\mathbf{b} \in \mathbb{Z}_{q}^{m}$, where $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ sampled from distribution D_{s} and
- noise/error $\mathbf{e} \in \mathbb{Z}^{m}$ sampled from distribution D_{e} such that $\|\mathbf{e}\|_{2} \leq \delta \ll q$.

Search learning with errors $\left(\mathrm{S}_{\mathrm{LW}} \mathrm{LWE}_{\delta}\right)$ asks to find s .
Decision learning with errors $\left(\mathrm{D}_{\mathrm{LW}} \mathrm{LW}_{\delta}\right)$ asks to distinguish (\mathbf{A}, \mathbf{b}) from the uniform distribution over $\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}$.

Learning With Errors [Reg05]

Given a matrix $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m \times n}\right)$.
Given a vector $\mathbf{b} \in \mathbb{Z}_{q}^{m}$, where $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ sampled from distribution D_{s} and
- noise/error $\mathbf{e} \in \mathbb{Z}^{m}$ sampled from distribution D_{e} such that $\|\mathbf{e}\|_{2} \leq \delta \ll q$.

Search learning with errors $\left(\mathrm{S}_{\mathrm{LW}} \mathrm{LWE}_{\delta}\right)$ asks to find s .
Decision learning with errors $\left(\mathrm{D}_{\mathrm{LW}} \mathrm{LW}_{\delta}\right)$ asks to distinguish (\mathbf{A}, \mathbf{b}) from the uniform distribution over $\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}$.

A The present noise makes S-LWE a hard problem.
A The norm restriction on e makes D-LWE a hard problem!

Learning With Errors [Reg05]

Given a matrix $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m \times n}\right)$.
Given a vector $\mathbf{b} \in \mathbb{Z}_{q}^{m}$, where $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$ for

- secret $\mathbf{s} \in \mathbb{Z}_{q}^{n}$ sampled from distribution D_{s} and
- noise/error $\mathbf{e} \in \mathbb{Z}^{m}$ sampled from distribution D_{e} such that $\|\mathbf{e}\|_{2} \leq \delta \ll q$.

Search learning with errors $\left(S-\mathrm{LWE}_{\delta}\right)$ asks to find \mathbf{s}.
Decision learning with errors $\left(\mathrm{D}_{\mathrm{LWE}}\right.$) asks to distinguish (\mathbf{A}, \mathbf{b}) from the uniform distribution over $\mathbb{Z}_{q}^{m \times n} \times \mathbb{Z}_{q}^{m}$.

A The present noise makes S-LWE a hard problem.
A The norm restriction on e makes D-LWE a hard problem!

Connection between LWE and SIS

\leftrightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for $\mathrm{D}-\mathrm{LWE}_{\delta}$, assuming $\delta \cdot \beta \ll q$.

Connection between LWE and SIS

\leftrightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for $\mathrm{D}-\mathrm{LWE}_{\delta}$, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (A, b), our goal is to decide whether 1) $\mathbf{b}=\mathbf{A s}+\mathbf{e}$ for $\|\mathbf{e}\|_{2} \leq \delta$ or 2) $\mathbf{b} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m}\right)$.

Connection between LWE and SIS

\leftrightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for $\mathrm{D}-\mathrm{LWE}_{\delta}$, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (A, b), our goal is to decide whether 1) $\mathbf{b}=\mathbf{A s}+\mathbf{e}$ for $\|\mathbf{e}\|_{2} \leq \delta$ or 2) $\mathbf{b} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m}\right)$.

Forward A to SIS-solver and receive back \mathbf{z} such that $\mathbf{A}^{T} \mathbf{z}=\mathbf{0} \bmod q$ and $\|\mathbf{z}\|_{2} \leq \beta$.

Connection between LWE and SIS

$<$ If there is an efficient solver for SIS_{β}, then there is an efficient solver for $\mathrm{D}-\mathrm{LWE}_{\delta}$, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (\mathbf{A}, \mathbf{b}), our goal is to decide whether 1) $\mathbf{b}=\mathbf{A s}+\mathbf{e}$ for $\|\mathbf{e}\|_{2} \leq \delta$ or 2) $\mathbf{b} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m}\right)$.

Forward A to SIS-solver and receive back \mathbf{z} such that $\mathbf{A}^{T} \mathbf{z}=\mathbf{0} \bmod q$ and $\|\mathbf{z}\|_{2} \leq \beta$.
Compute $\left\|\mathbf{b}^{T} \mathbf{z}\right\|_{\infty}$. If the norm is $\ll q$, claim that we are in case 1). Else, claim that we are in case 2).

Connection between LWE and SIS

\leftrightarrow If there is an efficient solver for SIS_{β}, then there is an efficient solver for $\mathrm{D}-\mathrm{LWE} \mathrm{E}_{\delta}$, assuming $\delta \cdot \beta \ll q$.

Proof.

Given (\mathbf{A}, \mathbf{b}), our goal is to decide whether 1$) \mathbf{b}=\mathbf{A s}+\mathbf{e}$ for $\|\mathbf{e}\|_{2} \leq \delta$ or 2) $\mathbf{b} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m}\right)$.

Forward \mathbf{A} to SIS-solver and receive back \mathbf{z} such that $\mathbf{A}^{T} \mathbf{z}=\mathbf{0} \bmod q$ and $\|\mathbf{z}\|_{2} \leq \beta$.
Compute $\left\|\mathbf{b}^{T} \mathbf{z}\right\|_{\infty}$. If the norm is $\ll q$, claim that we are in case 1). Else, claim that we are in case 2).
Case 1) $\mathbf{b}=\mathbf{A s}+\mathbf{e}$, thus $\mathbf{b}^{T} \mathbf{z}=\mathbf{s}^{T} \mathbf{A}^{T} \mathbf{z}+\mathbf{e}^{T} \mathbf{z}=\mathbf{e}^{T} \mathbf{z} \bmod q$. Thus $\left\|\mathbf{b}^{T} \mathbf{z}\right\|_{\infty} \leq\left\|\mathbf{e}^{T}\right\|_{\infty} \cdot\|\mathbf{z}\|_{\infty} \leq \delta \cdot \beta \ll q$.
Case 2) \mathbf{b} uniform, so is $\mathbf{b}^{T} \mathbf{z}$ and hence $\left\|\mathbf{b}^{T} \mathbf{z}\right\|_{\infty}$ with high chances larger than $\delta \beta$.

Part 3:
What is lattice-based cryptography?

Collision-Resistant Hash Function from SIS [Ajt96]

A function f : Domain \rightarrow Range is called collision-resistant if it is hard to output two elements $\mathbf{x}, \mathbf{x}^{\prime} \in$ Domain such that

$$
f(\mathbf{x})=f\left(\mathbf{x}^{\prime}\right) \text { and } \mathbf{x} \neq \mathbf{x}^{\prime}
$$

Collision-Resistant Hash Function from SIS [Ajt96]

A function f : Domain \rightarrow Range is called collision-resistant if it is hard to output two elements $\mathbf{x}, \mathbf{x}^{\prime} \in$ Domain such that

$$
f(\mathbf{x})=f\left(\mathbf{x}^{\prime}\right) \text { and } \mathbf{x} \neq \mathbf{x}^{\prime}
$$

Set $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ with $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A}^{T} \mathbf{x} \bmod q$ for $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m \times n}\right)$.

Collision-Resistant Hash Function from SIS [Ajt96]

A function f : Domain \rightarrow Range is called collision-resistant if it is hard to output two elements $\mathbf{x}, \mathbf{x}^{\prime} \in$ Domain such that

$$
f(\mathbf{x})=f\left(\mathbf{x}^{\prime}\right) \text { and } \mathbf{x} \neq \mathbf{x}^{\prime}
$$

Set $f_{\mathbf{A}}:\{0,1\}^{m} \rightarrow \mathbb{Z}_{q}^{n}$ with $f_{\mathbf{A}}(\mathbf{x})=\mathbf{A}^{T} \mathbf{x} \bmod q$ for $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{m \times n}\right)$.

蠗 Exercise: Assuming SIS is hard to solve for $\beta=\sqrt{m}$, then $f_{\mathbf{A}}$ is collision-resistant
Hint: $\mathrm{x} \neq \mathrm{x}^{\prime} \in\{0,1\}^{m} \Leftrightarrow \mathbf{0} \neq \mathrm{x}-\mathrm{x}^{\prime} \in\{-1,0,1\}^{m}$

$$
\mathbf{A}^{T} \mathbf{x}=\mathbf{A}^{T} \mathbf{x}^{\prime} \Leftrightarrow \mathbf{A}^{T}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0
$$

Reminder: Public-Key Encryption (PKE)

A public-key encryption scheme $\Pi=($ KGen, Enc, Dec $)$ consists of three algorithms:

- $\operatorname{KGen}\left(1^{\lambda}\right) \rightarrow(\mathrm{sk}, \mathrm{pk})$
λ security parameter
- Enc $(\mathrm{pk}, m) \rightarrow \mathrm{ct}$
- $\operatorname{Dec}($ sk, ct $)=m^{\prime}$

Correctness: $\operatorname{Dec}(\mathrm{sk}, \operatorname{Enc}(\mathrm{pk}, m))=m$ during an honest execution
Semantic Security: $\operatorname{Enc}\left(\mathrm{pk}, m_{0}\right)$ is indistinguishable from $\operatorname{Enc}\left(\mathrm{pk}, m_{1}\right)$ (IND-CPA)

Public-Key Encryption from LWE [Reg05]

Let χ be distribution on \mathbb{Z}.

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$

Public-Key Encryption from LWE [Reg05]

Let χ be distribution on \mathbb{Z}.

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathrm{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$

- $\operatorname{Enc}(\mathrm{pk}, m \in\{0,1\})$:
- $\mathbf{r}, \mathbf{f} \leftarrow \chi^{n}$ and $f^{\prime} \leftarrow \chi$
- $\mathbf{u}=\mathbf{r} \mathbf{A}+\mathbf{f}$

- $v=\mathbf{r b}+f^{\prime}+\lfloor q / 2\rfloor \cdot m$
- Output ct $=(\mathbf{u}, v)$

Public-Key Encryption from LWE [Reg05]

Let χ be distribution on \mathbb{Z}.

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathrm{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$

- $\operatorname{Enc}(\mathrm{pk}, m \in\{0,1\})$:
- $\mathbf{r}, \mathbf{f} \leftarrow \chi^{n}$ and $f^{\prime} \leftarrow \chi$

- $\mathbf{u}=\mathbf{r} \mathbf{A}+\mathbf{f}$
- $v=\mathbf{r b}+f^{\prime}+\lfloor q / 2\rfloor \cdot m$
- Output ct $=(\mathbf{u}, v)$
- Dec(sk, ct):
- If v - us is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Public-Key Encryption from LWE [Reg05]

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- $\operatorname{Enc}(\mathrm{pk}, m \in\{0,1\})$:
- $\mathbf{r}, \mathbf{f} \leftarrow \chi^{n}$ and $f^{\prime} \leftarrow \chi$
- $\mathbf{u}=\mathbf{r} \mathbf{A}+\mathbf{f}$
- $v=\mathbf{r b}+f^{\prime}+\lfloor q / 2\rfloor \cdot m$
- Output ct $=(\mathbf{u}, v)$
- Dec(sk, ct):
- If v - us is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Correctness:

$$
\begin{aligned}
v-\mathbf{u s} & =\mathbf{r}(\mathbf{A s}+\mathbf{e})+f^{\prime}+\lfloor q / 2\rfloor \cdot m-(\mathbf{r} \mathbf{A}+\mathbf{f}) \mathbf{s} \\
& =\underbrace{\mathbf{r e}+f^{\prime}-\mathbf{f s}}_{* \text { ciphertext noise }}+\lfloor q / 2\rfloor m
\end{aligned}
$$

Decryption succeeds if $|*|<q / 8$

Public-Key Encryption from LWE [Reg05]

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- $\operatorname{Enc}(\mathrm{pk}, m \in\{0,1\}):$
$\Rightarrow \mathbf{r}, \mathbf{f} \leftarrow \chi^{n}$ and $f^{\prime} \leftarrow \chi$
- $\mathbf{u}=\mathbf{r} \mathbf{A}+\mathbf{f}$
- $v=\mathbf{r b}+f^{\prime}+\lfloor q / 2\rfloor \cdot m$
- Output ct $=(\mathbf{u}, v)$
- Dec(sk, ct):
- If v - us is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$
$\mathbf{A}, \boxed{\mathbf{A}} \mathbf{s}+\mathbf{e}=\square \mathbf{b}$

Correctness: Let χ be B-bounded with $2 n B^{2}+B<q / 8$

$$
\begin{aligned}
v-\mathbf{u s} & =\mathbf{r}(\mathbf{A s}+\mathbf{e})+f^{\prime}+\lfloor q / 2\rfloor \cdot m-(\mathbf{r A}+\mathbf{f}) \mathbf{s} \\
& =\underbrace{\mathbf{r e}+f^{\prime}-\mathbf{f s}}_{* \text { ciphertext noise }}+\lfloor q / 2\rfloor m
\end{aligned}
$$

Decryption succeeds if $|*|<q / 8$

$$
|*|=\left|\mathbf{r e}+f^{\prime}-\mathbf{f s}\right| \leq\|\mathbf{r}\|_{2} \cdot\|\mathbf{e}\|_{2}+\|\mathbf{f}\|_{2} \cdot\|\mathbf{s}\|_{2}+\left|f^{\prime}\right| \leq 2(\sqrt{n} B \cdot \sqrt{n} B)+B<q / 8
$$

Public-Key Encryption from LWE [Reg05]

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- Enc(pk, $m \in\{0,1\})$:
- $\mathbf{r}, \mathbf{f} \leftarrow \chi^{n}$ and $f^{\prime} \leftarrow \chi$
- $\mathbf{u}=\mathbf{r} \mathbf{A}+\mathbf{f}$

- Dec(sk, ct):
- If v - us is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Semantic Security: Assume hardness of decision LWE

1. replace \mathbf{b} by uniform random vector
2. replace non-message part ($*$) by uniform random vector
3. then the message is completely hidden

Kyber - Selected for Standardization by NIST

Kyber = the previous construction + several improvements

Main improvements:

1. Structured LWE variant (most important)
2. LWE secret and noise from centered binomial distribution
3. Pseudorandomness for distributions
4. Ciphertext compression

Sources:

- Website of Kyber: https://pq-crystals.org/kyber/
- Latest specifications [link]
- Tutorial by V. Lyubashevsky [link]
$\stackrel{ \pm}{\mathrm{sw}_{n}}$

Part 4:
What are (my) current challenges?

Re-Reminder: Public Key Encryption (PKE)

PKE scheme:

- KGen $\left(1^{\lambda}\right) \rightarrow(\mathrm{pk}, \mathrm{sk})$
- $\operatorname{Enc}(\mathrm{pk}, m) \rightarrow \mathrm{ct}$ -
- $\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow m^{\prime}$ 国

Properties:

- Correctness
- Semantic security

Re-Reminder: Public Key Encryption (PKE)

PKE scheme:

- KGen $\left(1^{\lambda}\right) \rightarrow(\mathrm{pk}, \mathrm{sk})$
λ security parameter
- $\operatorname{Enc}(\mathrm{pk}, m) \rightarrow \mathrm{ct}$ -
- $\operatorname{Dec}(\mathrm{sk}, \mathrm{ct}) \rightarrow m^{\prime}$ 国

Properties:

- Correctness
- Semantic security

A Single Point of Failure

Threshold Public Key Encryption (TPKE)

t-out-of- n Threshold PKE scheme:

- KGen $\left(1^{\lambda}\right) \rightarrow\left(\mathrm{pk}, \mathrm{sk}_{1}, \ldots, \mathrm{sk}_{n}\right)$
secret sharing
- Enc(pk, m) \rightarrow ct
- PartDec $\left(\mathrm{sk}_{i}\right.$, ct' $\left.^{\prime}\right) \rightarrow d_{i}$
- Combine $\left(\left\{d_{i}\right\}_{i \in S}\right) \rightarrow m^{\prime}$

[^1]
Threshold Public Key Encryption (TPKE)

t-out-of- n Threshold PKE scheme:

- $\operatorname{KGen}\left(1^{\lambda}\right) \rightarrow\left(\mathrm{pk}, \mathrm{sk}_{1}, \ldots, \mathrm{sk}_{n}\right)$
secret sharing
- Enc(pk, m) \rightarrow ct
- PartDec $\left(\mathrm{sk}_{i}, \mathrm{ct}^{\prime}\right) \rightarrow d_{i}$
$i \in\{1, \ldots, n\}$
- Combine $\left(\left\{d_{i}\right\}_{i \in S}\right) \rightarrow m^{\prime}$
$S \subset\{1, \ldots, n\}$

[^2]
Threshold Public Key Encryption (TPKE)

t-out-of- n Threshold PKE scheme:

- KGen $\left(1^{\lambda}\right) \rightarrow\left(\mathrm{pk}, \mathrm{sk}_{1}, \ldots, \mathrm{sk}_{n}\right)$
- Enc(pk, m) \rightarrow ct
- PartDec $\left(\mathrm{sk}_{i}, \mathrm{ct}^{\prime}\right) \rightarrow d_{i}$
- Combine $\left(\left\{d_{i}\right\}_{i \in S}\right) \rightarrow m^{\prime}$

```
i\in{1,\ldots,n}
S\subset{1,\ldots,n}
```

Properties:

- Correctness
- Partial decryption security
for $|S|>t$ recover correct message
for $|S| \leq t$ no information is leaked
- Semantic security

Applications:

- Storing sensitive data
- Electronic voting protocols
- Multiparty computations

[^3]
Reminder: PKE from LWE

- $\operatorname{KGen}\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- $\operatorname{Enc}(\mathrm{pk}, m \in\{0,1\})$:
- $\mathbf{r}, \mathbf{f} \leftarrow \chi^{n}$ and $f^{\prime} \leftarrow \chi$
- $\mathbf{u}=\mathbf{r} \mathbf{A}+\mathbf{f}$

- $v=\mathbf{r b}+f^{\prime}+\lfloor q / 2\rfloor \cdot m$
- Output ct $=(\mathbf{u}, v)$
- $\operatorname{Dec}($ sk, ct):
- If v - us is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Reminder: PKE from LWE

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- Output sk $=\mathbf{s}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- $\operatorname{Enc}(\mathrm{pk}, m \in\{0,1\})$:
- $\mathbf{r}, \mathbf{f} \leftarrow \chi^{n}$ and $f^{\prime} \leftarrow \chi$
- $\mathbf{u}=\mathbf{r} \mathbf{A}+\mathbf{f}$

- $v=\mathbf{r b}+f^{\prime}+\lfloor q / 2\rfloor \cdot m$
- Output ct $=(\mathbf{u}, v)$
- Dec(sk, ct):
- If v - us is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

In order to thresholdize it: modify KGen and replace Dec by PartDec and Combine (Enc stays the same)

Full-Threshold PKE from LWE, First Trial

```
(n-out-of-n)
```

- $\operatorname{KGen}\left(1^{\lambda}\right):$
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n-1} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n}\right)$

- $\mathbf{s}_{n}=\mathbf{s}-\sum_{i=1}^{n-1} \mathbf{s}_{i}$
- Output $\mathrm{sk}_{i}=\mathbf{s}_{i}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- PartDec $\left(\mathrm{sk}_{i},(\mathbf{u}, v)\right)$:
- Output $d_{i}=\mathbf{u s}_{i}$
- Combine $\left(d_{1}, \ldots, d_{n}\right)$:
- $d=\sum_{i=1}^{n} d_{i}$
- If $v-d$ is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Full-Threshold PKE from LWE, First Trial

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n-1} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n}\right)$
- $\mathbf{s}_{n}=\mathbf{s}-\sum_{i=1}^{n-1} \mathbf{s}_{i}$
- Output $\mathrm{sk}_{i}=\mathbf{s}_{i}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- PartDec $\left(\mathrm{sk}_{i},(\mathbf{u}, v)\right)$:
- Output $d_{i}=\mathbf{u s}_{i}$
- Combine $\left(d_{1}, \ldots, d_{n}\right)$:
- $d=\sum_{i=1}^{n} d_{i}$
- If $v-d$ is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Correctness: given d_{1}, \ldots, d_{n}

$$
\begin{aligned}
v-\sum_{i=1}^{n} \mathbf{u s}_{i} & =v-\mathbf{u} \sum_{i=1}^{n} \mathbf{s}_{i}=v-\mathbf{u s} \\
& =\underbrace{\mathbf{r e}+f^{\prime}-\mathbf{f s}}_{* \text { ciphertext noise }}+\lfloor q / 2\rfloor m
\end{aligned}
$$

Decryption succeeds if $|*|<q / 8$

Full-Threshold PKE from LWE, First Trial

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n-1} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n}\right)$
- $\mathbf{s}_{n}=\mathbf{s}-\sum_{i=1}^{n-1} \mathbf{s}_{i}$
- Output $\mathrm{sk}_{i}=\mathbf{s}_{i}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- PartDec $\left(\mathrm{sk}_{i},(\mathbf{u}, v)\right)$:
- Output $d_{i}=\mathbf{u s}{ }_{i}$
- Combine $\left(d_{1}, \ldots, d_{n}\right)$:
- $d=\sum_{i=1}^{n} d_{i}$
- If $v-d$ is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Correctness: given d_{1}, \ldots, d_{n}

$$
\begin{aligned}
v-\sum_{i=1}^{n} \mathbf{u s}_{i} & =v-\mathbf{u} \sum_{i=1}^{n} \mathbf{s}_{i}=v-\mathbf{u s} \\
& =\underbrace{\mathbf{r e}+f^{\prime}-\mathbf{f s}}_{* \text { ciphertext noise }}+\lfloor q / 2\rfloor m
\end{aligned}
$$

A But (*) leaks information about sk $=\mathbf{s}$!

Full-Threshold PKE from LWE [BD10]

- KGen (1^{λ}):
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- $\mathbf{s}=\sum_{i=1}^{n} \mathbf{s}_{i}$

- Output $\mathrm{sk}_{i}=\mathrm{s}_{i}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- PartDec $\left(\mathrm{sk}_{i}, \mathrm{ct}\right)$:
- Sample $e_{i} \leftarrow D_{\text {flood }}$
- Output $d_{i}=\mathbf{u s}_{i}+e_{i}$
- Combine $\left(d_{1}, \ldots, d_{n}\right)$:
- $d=\sum_{i=1}^{n} d_{i}$
- If $v-d$ is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Full-Threshold PKE from LWE [BD10]

- KGen $\left(1^{\lambda}\right)$:
- $\mathbf{A} \leftarrow \operatorname{Unif}\left(\mathbb{Z}_{q}^{n \times n}\right)$ and $\mathbf{s}, \mathbf{e} \leftarrow \chi^{n}$
- $\mathbf{b}=\mathbf{A s}+\mathbf{e} \bmod q$
- $\mathbf{s}=\sum_{i=1}^{n} \mathbf{s}_{i}$

- Output $\mathrm{sk}_{i}=\mathrm{s}_{i}$ and $\mathrm{pk}=(\mathbf{A}, \mathbf{b})$
- PartDec $\left(\mathrm{sk}_{i}, \mathrm{ct}\right)$:
- Sample $e_{i} \leftarrow D_{\text {flood }}$
- Output $d_{i}=\mathbf{u s}{ }_{i}+e_{i}$
- Combine $\left(d_{1}, \ldots, d_{n}\right)$:
- $d=\sum_{i=1}^{n} d_{i}$
- If $v-d$ is closer to 0 than to $q / 2$, output $m^{\prime}=0$
- Else output $m^{\prime}=1$

Correctness:

$$
\begin{aligned}
v-\sum_{i=1}^{n} \mathbf{u s}_{i}+e_{i} & =v-\mathbf{u} \sum_{i=1}^{n} \mathbf{s}_{i}+e_{i}=v-\mathbf{u s}+\sum_{i=1}^{n} e_{i} \\
& =\mathbf{r e}+f^{\prime}-\mathbf{f} \mathbf{s}+\sum_{i=1}^{n} e_{i}+\lfloor q / 2\rfloor m
\end{aligned}
$$

Decryption succeeds if $|*|<q / 8$

Put under the carpet for today ...

A It is non-trivial to go from full-threshold to arbitrary threshold PKE if you are working with lattices ;-)
n-out-of- n threshold

$$
\sum_{i=1}^{n} e_{i}
$$

t-out-of- n threshold

$$
\sum_{i \in S} \lambda_{i} e_{i}
$$

still needs to be small
? There are solutions, but not very efficient for large n.

Partial Decryption Security

Two worlds:

- Real: $e_{\mathrm{ct}}=\mathbf{r e}+f^{\prime}-\mathbf{f s}$ and $e_{\text {flood }}=\sum_{i} e_{i}$
- Simulated: only $e_{\text {flood }}=\sum_{i} e_{i}$

How close are they? [BD10] measures with statistical distance Δ

$$
\Delta(\text { Real }, \text { Sim }) \leq \Delta\left(e_{\text {flood }}+e_{\mathrm{ct}}, e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda)
$$

Partial Decryption Security

Two worlds:

- Real: $e_{\mathrm{ct}}=\mathbf{r e}+f^{\prime}-\mathbf{f s}$ and $e_{\text {flood }}=\sum_{i} e_{i}$
- Simulated: only $e_{\text {flood }}=\sum_{i} e_{i}$

How close are they? [BD10] measures with statistical distance Δ

$$
\Delta(\text { Real }, \operatorname{Sim}) \leq \Delta\left(e_{\text {flood }}+e_{\mathrm{ct}}, e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda)
$$

Problem:

- $\left\|e_{f l o o d}\right\|$ needs to be super-polynomially larger than $\left\|e_{\text {ct }}\right\|$
- LWE-based constructions: $\left\|e_{\text {flood }}\right\| \sim$ LWE modulus q and $\left\|e_{\mathrm{ct}}\right\| \sim$ LWE noise \mathbf{e}, thus super-polynomial modulus-noise ratio
- Larger parameters
- Easier problem

Partial Decryption Security

8 Idea: change the measure!
 $\left[\mathrm{BLR}^{+} 18\right]$

Two worlds:

- Real: $e_{\mathrm{ct}}=\mathbf{r e}+f^{\prime}-\mathbf{f s}$ and
- Simulated: only $e_{\text {flood }}=\Sigma$

How close are they? [BD10] measures with statistical distance Δ

$$
\Delta(\text { Real }, \text { Sim }) \leq \Delta\left(e_{\text {flood }}+e_{\mathrm{ct}}, e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda)
$$

Problem:

- \|e $e_{\text {flood }} \|$ needs to be super-polynomially larger than $\left\|e_{c t}\right\|$
- LWE-based constructions: $\left\|e_{\text {flood }}\right\| \sim$ LWE modulus q and $\left\|e_{\mathrm{ct}}\right\| \sim$ LWE noise \mathbf{e}, thus super-polynomial modulus-noise ratio
- Larger parameters
- Easier problem

Improved Noise Flooding via Rényi Divergence 1/2

Let P, Q be discrete probability distributions
In [BD10]: Statistical Distance $\Delta(P, Q)=\frac{1}{2} \sum_{x \in \operatorname{Supp}(P)}|P(x)-Q(x)|$
In [BS23]: Rényi Divergence

$$
\mathrm{RD}(P, Q)=\sum_{\substack{x \in \operatorname{Supp}(P) \\ \text { cSupp }(Q)}} \frac{P(x)^{2}}{Q(x)}
$$

Improved Noise Flooding via Rényi Divergence 1/2

Let P, Q be discrete probability distributions
In [BD10]: Statistical Distance $\Delta(P, Q)=\frac{1}{2} \sum_{x \in \operatorname{Supp}(P)}|P(x)-Q(x)|$
In [BS23]: Rényi Divergence

$$
\mathrm{RD}(P, Q)=\sum_{\substack{x \in \operatorname{Supp}(P) \\ \subset \operatorname{Supp}(Q)}} \frac{P(x)^{2}}{Q(x)}
$$

Both fulfill the probability preservation property for an event E :

[BD10]:	$P(E) \leq \Delta(P, Q)+Q(E)$	(additive)	
Our work:	$P(E)^{2}$	$\leq \operatorname{RD}(P, Q) \cdot Q(E)$	(multiplicative)

- $Q(E)$ negligible $\Rightarrow P(E)$ negligible
- $\Delta(P, Q)=$! negligible and $\mathrm{RD}(P, Q)=$! constant

Improved Noise Flooding via Rényi Divergence 2/2

Two worlds:

- Real: e_{ct} and $e_{\text {flood }}$
- Simulated: only $e_{\text {flood }}$

How close are they?

$$
\begin{aligned}
\Delta(\text { Real }, \text { Sim }) & \leq \Delta\left(e_{\text {flood }}+e_{\mathrm{ct}}, e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda) \\
\mathrm{RD}(\text { Real }, \operatorname{Sim}) & \leq \mathrm{RD}\left(e_{\text {flood }}+e_{\mathrm{ct}}, e_{\text {flood }}\right) \leq \mathrm{constant}
\end{aligned}
$$

Advantage:

- $\left\|e_{\text {flood }}\right\|$ only needs to be polynomially larger than $\left\|e_{\text {ct }}\right\|$
- LWE-based constructions: polynomial modulus-noise ratio

Improved Noise Flooding via Rényi Divergence 2/2

Two worlds:

- Real: e_{ct} and $e_{\text {flood }}$
- Simulated: only $e_{\text {flood }}$

How close are they?

$$
\begin{aligned}
\Delta(\text { Real }, \operatorname{Sim}) & \leq \Delta\left(e_{\text {flood }}+e_{\mathrm{ct}}, e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda) \\
\mathrm{RD}(\text { Real }, \operatorname{Sim}) & \leq \mathrm{RD}\left(e_{\text {flood }}+e_{\mathrm{ct}}, e_{\text {flood }}\right) \leq \mathrm{constant}
\end{aligned}
$$

Advantage:

- $\left\|e_{\text {flood }}\right\|$ only needs to be polynomially larger than $\left\|e_{\text {ct }}\right\|$
- LWE-based constructions: polynomial modulus-noise ratio

Disadvantage:

1) Rényi divergence depends on the number of issued partial decryptions
\rightarrow from simulation-based to game-based security notion
2) Works well with search problems, not so well with decision problems

Zooming out - leakage on secret key

Two worlds:

- Real: $f(\mathrm{sk})$ and $e_{\text {flood }}$
- Simulated: only $e_{\text {flood }}$

How close are they?

$$
\begin{aligned}
\Delta(\text { Real }, \operatorname{Sim}) & \leq \Delta\left(e_{\text {flood }}+f(\text { sk }), e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda) \\
\mathrm{RD}(\text { Real }, \text { Sim }) & \leq \mathrm{RD}\left(e_{\text {flood }}+f(\mathrm{sk}), e_{\text {flood }}\right) \leq \mathrm{constant}
\end{aligned}
$$

Zooming out - leakage on secret key

Two worlds:

- Real: $f(\mathrm{sk})$ and $e_{\text {flood }}$
- Simulated: only $e_{\text {flood }}$

How close are they?

$$
\begin{aligned}
\Delta(\text { Real }, \operatorname{Sim}) & \leq \Delta\left(e_{\text {flood }}+f(\text { sk }), e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda) \\
\mathrm{RD}(\text { Real }, \text { Sim }) & \leq \mathrm{RD}\left(e_{\text {flood }}+f(\mathrm{sk}), e_{\text {flood }}\right) \leq \mathrm{constant}
\end{aligned}
$$

Examples:

- Threshold decryption: $f(\mathrm{sk})$ is the ciphertext noise
- Signatures schemes: $f(\mathrm{sk})$ is part of a signature

Zooming out - leakage on secret key

Two worlds:

- Real: $f(\mathrm{sk})$ and $e_{\text {flood }}$
- Simulated: only $e_{\text {flood }}$

How close are they?

$$
\begin{aligned}
\Delta(\text { Real }, \operatorname{Sim}) & \leq \Delta\left(e_{\text {flood }}+f(\text { sk }), e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda) \\
\mathrm{RD}(\text { Real }, \text { Sim }) & \leq \mathrm{RD}\left(e_{\text {flood }}+f(\mathrm{sk}), e_{\text {flood }}\right) \leq \mathrm{constant}
\end{aligned}
$$

Examples:

- Threshold decryption: $f(\mathrm{sk})$ is the ciphertext noise
- Signatures schemes: $f(\mathrm{sk})$ is part of a signature

Alternative Approaches:

- Rejection Sampling \rightarrow Dilithium
- LWE with hints aka just accept the leakage

Zooming out - leakage on secret key

Two worlds:

- Real: $f(\mathrm{sk})$ and $e_{\text {flood }}$
- Simulated: only $e_{\text {flood }}$

How close are they?

$$
\begin{aligned}
\Delta(\text { Real }, \operatorname{Sim}) & \leq \Delta\left(e_{\text {flood }}+f(\text { sk }), e_{\text {flood }}\right) \leq \operatorname{negl}(\lambda) \\
\mathrm{RD}(\text { Real }, \text { Sim }) & \leq \mathrm{RD}\left(e_{\text {flood }}+f(\mathrm{sk}), e_{\text {flood }}\right) \leq \mathrm{constant}
\end{aligned}
$$

Examples:

- Threshold decryption: $f(\mathrm{sk})$ is the ciphertext noise
- Signatures schemes: $f(\mathrm{sk})$ is part of a signature
$\mathbf{6}$ We don't yet understand
Alternative Approaches:
- Rejection Sampling \rightarrow Dilithium
- LWE with hints aka just accept the leakage

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What particular challenges are!

Any questions or interested in my research?

- Reach out to me today or at Latincrypt
- Write me an e-mail

Wrap-Up

Hopefully you have now a rough idea:

- Part 1: What lattices are!
- Part 2: What lattice problems are!
- Part 3: What lattice-based cryptography is!
- Part 4: What particular challenges are!

Any questions or interested in my research?

- Reach out to me today or at Latincrypt
- Write me an e-mail

Miklós Ajtai.
Generating hard instances of lattice problems (extended abstract).
In STOC, pages 99-108. ACM, 1996.

- Rikke Bendlin and Ivan Damgård.

Threshold decryption and zero-knowledge proofs for lattice-based cryptosystems.
In TCC, volume 5978 of Lecture Notes in Computer Science, pages 201-218.
Springer, 2010.
Shi Bai, Tancrède Lepoint, Adeline Roux-Langlois, Amin Sakzad, Damien Stehlé, and Ron Steinfeld.
Improved security proofs in lattice-based cryptography: Using the rényi divergence rather than the statistical distance.
J. Cryptol., 31(2):610-640, 2018.

Katharina Boudgoust and Peter Scholl.
Simple threshold (fully homomorphic) encryption from LWE with polynomial modulus.
IACR Cryptol. ePrint Arch., page 16, 2023.
O Oded Regev.
On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84-93. ACM, 2005.
Peter W. Shor.

Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer.
SIAM J. Comput., 26(5):1484-1509, 1997.

[^0]: *https://csrc.nist.gov/projects/post-quantum-cryptography

[^1]: *https://csrc.nist.gov/projects/threshold-cryptography

[^2]: *https://csrc.nist.gov/projects/threshold-cryptography

[^3]: *https://csrc.nist.gov/projects/threshold-cryptography

