Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer Channels

Ivan Damgård¹, Divya Ravi¹,2, Luisa Siniscalchi³, Sophia Yakoubov¹
eprint.iacr.org/2023/1187
${ }^{1}$ Aarhus University, ${ }^{2}$ University of Amsterdam, ${ }^{3}$ DTU

Broadcast-Optimal Two Round MPC

Broadcast-Optimal Two Round MPC

Alan

Broadcast-Optimal Two Round MPC

Broadcast-Optimal Two Round MPC

$$
y=f\left(x_{A}, x_{B}, x_{G}\right)
$$

Broadcast-Optimal Two Round MPC

$y=$ should we read or for book club?

Broadcast-Optimal Two Round MPC

$y=$ should we read or for book club?

Broadcast-Optimal Two Round MPC

$y=$ should we read or for book club?

Broadcast-Optimal Two Round MPC

$$
y=\text { should we read or for book club? }
$$

- Privacy: t corrupt parties learn no additional information about honest parties' inputs

Broadcast-Optimal Two Round MPC

$$
y=\text { should we read or for book club? }
$$

- Privacy: t corrupt parties learn no additional information about honest parties' inputs
- Correctness

Broadcast-Optimal Two Round MPC

$$
y=\text { should we read or for book club? }
$$

- Privacy: t corrupt parties learn no additional information about honest parties' inputs
- Correctness

Stronger

Broadcast-Optimal Two Round MPC

$$
y=\text { should we read or for book club? }
$$

- Privacy: t corrupt parties learn no additional information about honest parties' inputs
- Correctness

- Selective Abort

Stronger

Broadcast-Optimal Two Round MPC

$$
y=\text { should we read or for book club? }
$$

- Privacy: t corrupt parties learn no additional information about honest parties' inputs
- Correctness
- Selective Abort

Stronger

- Unanimous Abort

Broadcast-Optimal Two Round MPC

$$
y=\text { should we read }
$$

- Privacy: t corrupt parties learn no additional information about honest parties' inputs
- Correctness:
- Selective Abort

Stronger

- Unanimous Abort
- Identifiable Abort

Broadcast-Optimal Two Round MPC

$$
y=\text { should we read } 18 \text { or for book club? }
$$

- Privacy: t corrupt parties learn no additional information about honest parties' inputs
- Correctness:
- Selective Abort
- Unanimous Abort
- Identifiable Abort
- Guaranteed Output Delivery

Broadcast-Optimal Two Round MPC

Broadcast-Optimal Two Round MPC

Broadcast-Optimal Two Round MPC

Broadcast-Optimal Two Round MPC

- Rounds are expensive!
- At least two rounds needed for MPC

Broadcast-Optimal Two Round MPC

- Rounds are expensive!
- At least two rounds needed for MPC
- Broadcast is expensive!
- Takes many rounds, or
- Uses expensive resources

Broadcast-Optimal Two Round MPC

- Rounds are expensive!
- At least two rounds needed for MPC
- Broadcast is expensive!
- Takes many rounds, or
- Uses expensive resources
- Most two-round MPC:
- Does not use broadcast (gets weaker guarantees - e.g. selective abort)

Broadcast-Optimal Two Round MPC

- Rounds are expensive!
- At least two rounds needed for MPC
- Broadcast is expensive!
- Takes many rounds, or
- Uses expensive resources
- Most two-round MPC:
- Does not use broadcast (gets weaker guarantees - e.g. selective abort)
- Uses broadcast in both rounds (expensive)

Broadcast-Optimal Two Round MPC

which of the two rounds do we really need broadcast in?

Broadcast-Optimal Two Round MPC

which of the two rounds do we really need broadcast in?

	Dishonest majority	Honest majority
PKI		[DMRSY21]
No PKI	[CGZ20]	[DRSY23]

PKI: public key infrastructure

Broadcast-Optimal Two Round MPC

which of the two rounds do we really need broadcast in?

	Dishonest majority	Honest majority
PKI	[CG7oni ${ }^{\text {a }}$ Synchronous Channels	
No. PKI	Assumes Sy	[DRSY23]

PKI: public key infrastructure

Synchronous
 communication

Guaranteed to be delivered within one round

Synchronous communication

Synchronous communication

Asynchronous communication

Guaranteed to be delivered within one round

Synchronous communication

Asynchronous communication

Arbitrarily delayed by adversary

Guaranteed to be delivered within one round

Synchronous communication

Asynchronous communication

Arbitrarily delayed by adversary
Honest parties never know whether..

- message was never sent, or
- It was delayed

Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer Rounds

Second round

Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer Rounds

Second round

Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer Rounds

Second round

		asynchronous P2P	BC
$\begin{aligned} & 0 \\ & \frac{1}{5} \\ & 0 \end{aligned}$	asynchronous P2P	impossible with standard definitions of security	Impossible with classical notion of asynchrony We introduce a new variant!
$\underset{i}{i}$	BC	Impossible for $n<=2 t$ Possible otherwise (under some conditions)	well-studied

Broadcast-Optimal Two Round MPC with Asynchronous Peer-to-Peer Rounds

Second round

		asynchronous P2P	BC
$\begin{aligned} & 0 \\ & \frac{1}{5} \\ & 0 \end{aligned}$	asynchronous P2P	impossible with standard definitions of security	Impossible with classical notion of asynchrony We introduce a new variant!
$\underset{i}{i}$	BC	Impossible for $n<=2 t$ Possible otherwise (under some conditions)	well-studied

Impossibility of asyncP2P, BC

Impossibility of asyncP2P, BC

Impossibility of asyncP2P, BC

Impossibility of asyncP2P, BC

Impossibility of asyncP2P, BC

Impossibility of asyncP2P, BC

- Nothing H says depends on X_{B}

Impossibility of asyncP2P, BC

- ... so B can swap out X_{B} after the computation!

- Nothing H says depends on X_{B}

Impossibility of asyncP2P, BC

- ... so B can swap out X_{B} after the computation!

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony

deafness muteness
threshold
threshold

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony

deafness threshold
muteness threshold

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony

deafness
threshold
muteness threshold

- $t_{d}=2$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony

deafness
threshold
muteness threshold

- $t_{d}=2$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony

deafness muteness
threshold threshold

- $t_{d}=2$
- $\mathrm{t}_{\mathrm{m}}=1$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony

deafness muteness
threshold threshold

- $t_{d}=2$
- $\mathrm{t}_{\mathrm{m}}=1$

$\left(t_{d}, t_{m}\right)$-asyncP2P, BC with PKI

round $1:\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P round 2: $B C$

$f\left(X_{D}, X_{B}{ }^{\prime}\right)$

$\left(t_{d}, t_{m}\right)$-asyncP2P, BC with PKI

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC with PKI

$f\left(X_{D}, X_{B}{ }^{\prime}\right)$
residual function attack!

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC with PKI

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC with PKI

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC with PKI

round 1 : $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P round 2: BC

$f\left(X_{D}, X_{B}{ }^{\prime}, X_{C}\right)$
residual function attack!

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

 with private channels
round 1: $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P round 2: $\bar{B} \bar{C}$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

 with private channels
round 1: $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P round 2: $\bar{B} \bar{C}$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

 with private channels$$
\begin{gathered}
\text { Possible as long as } \\
\begin{array}{c}
t_{m}>=(n-t) / 2, \\
t_{d}>=(n-t) / 2
\end{array}
\end{gathered}
$$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

 with private channels
round 1 : $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P round 2: BC

$$
\begin{gathered}
\text { Possible as long as } \\
t_{m}>=(n-t) / 2, \\
t_{d}>=(n-t) / 2
\end{gathered}
$$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

 with private channels
round 1 : $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P round 2 : $\overline{B C}$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

 with private channelsround 1 : $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P round 2: $B C$

$$
\begin{gathered}
\text { Possible as long as } \\
t_{m}>=(n-t) / 2, \\
t_{d}>=(n-t) / 2
\end{gathered}
$$

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

with PKI

with private channels

no PKI or private channels

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

with PKI

with private channels

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

with private channels

no PKI or private channels

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

with private channels

no PKI or private channels

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC

with PKI

with private channels

no PKI or private channels

$\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asyncP2P, BC: Constructions

- Using tools from previous papers
- Variants of one-or-nothing secret sharing
- Do not support all values of $\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}$
- New constructions from indistinguishability obfuscation
- New primitive: puncturable sender-public key encryption
- Inefficient / unrealistic building blocks

Summary

- Our contributions:
- New notion of $\left(\mathrm{t}_{\mathrm{d}}, \mathrm{t}_{\mathrm{m}}\right)$-asynchrony
- Impossibility results
- Constructions

