Ivan Damgård¹, Divya Ravi^{1,2}, Luisa Siniscalchi³, Sophia Yakoubov¹ eprint.iacr.org/2023/1187

¹Aarhus University, ²University of Amsterdam, ³DTU

 $y = f(x_A, x_B, x_G)$

y = should we read for book club? or Grace Bruce • 2 • Alan

- Privacy: t corrupt parties learn no additional information about honest parties' inputs
- Correctness

y = should we read for book club? or • Privacy: t corrupt parties learn no additional Bruce Grace information about honest parties' inputs 0 2 . Alan

Stronger

• Correctness

Stronger

• Correctness

Selective Abort

Stronger

• Correctness

• Selective Abort

• Unanimous Abort

Stronger

Stronger

• Correctness:

• Selective Abort

Unanimous Abort

Identifiable Abort

- Rounds are expensive!
 - At least two rounds needed for MPC

- Rounds are expensive!
 - At least two rounds needed for MPC
- Broadcast is expensive!
 - Takes many rounds, or
 - Uses expensive resources

- Rounds are expensive!
 - At least two rounds needed for MPC
- Broadcast is expensive!
 - Takes many rounds, or
 - Uses expensive resources
- Most two-round MPC:
 - Does not use broadcast (gets weaker guarantees e.g. selective abort)

- Rounds are expensive!
 - At least two rounds needed for MPC
- Broadcast is expensive!
 - Takes many rounds, or
 - Uses expensive resources
- Most two-round MPC:
 - Does not use broadcast (gets weaker guarantees e.g. selective abort)
 - Uses broadcast in both rounds (expensive)

which of the two rounds do we *really* need broadcast in?

which of the two rounds do we *really* need broadcast in?

	Dishonest majority	Honest majority
РКІ	[CGZ20]	[DMRS Y 21]
Νο ΡΚΙ		[DRS Y 23]

PKI: public key infrastructure

which of the two rounds do we *really* need broadcast in?

	Dishonest majority	Honest majority
РКІ	[CG720] Assumes Synch	ronous Channels
No PKI	Assumes Synch	[DRSY23]

PKI: public key infrastructure

Synchronous communication

Synchronous communication

Synchronous communication

Asynchronous communication

Synchronous communication

Asynchronous communication

Arbitrarily delayed by adversary

Synchronous communication

Asynchronous communication

Arbitrarily delayed by adversary

Honest parties never know whether...

- message was never sent, or
- It was delayed

		asynchronous P2P	BC
first round	asynchronous P2P	impossible with standard definitions of security	
	BC		well-studied

		asynchronous P2P	BC
first round	asynchronous P2P	impossible with standard definitions of security	
	BC	Impossible for n <= 2t Possible otherwise (under some conditions)	well-studied

		asynchronous P2P	BC
first round	asynchronous P2P	impossible with standard definitions of security	Impossible with classical notion of asynchrony We introduce a new variant!
	BC	Impossible for n <= 2t Possible otherwise (under some conditions)	well-studied

		asynchronous P2P	BC
first round	asynchronous P2P	impossible with standard definitions of security	Impossible with classical notion of asynchrony We introduce a new variant!
	BC	Impossible for n <= 2t Possible otherwise (under some conditions)	well-studied

Impossibility of asyncP2P, BC

Impossibility of asyncP2P, BC

Nothing H says depends on X_B

- Nothing H says depends on X_B
- ... so B can swap out X_B after the computation!

- Nothing H says depends on X_B
- ... so B can swap out X_B after the computation!

(t_d,t_m)-asynchrony

(t_d,t_m)-asynchrony deafness muteness threshold threshold

(t_d,t_m)-asyncP2P, BC: Constructions

- Using tools from previous papers
 - Variants of one-or-nothing secret sharing
 - Do not support all values of t_d,t_m
- New constructions from indistinguishability obfuscation
 - New primitive: puncturable sender-public key encryption
 - Inefficient / unrealistic building blocks

Summary

- Our contributions:
 - New notion of (t_d,t_m)-asynchrony
 - Impossibility results
 - Constructions