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Let  be a malicious prover that convinces the verifier with probability . We 
construct the extractor  as follows:


-  runs prover  to obtain initial message 

- Send  to  and obtains response 

- Rewind  to its state after 

- Send  and get response 


- Output 

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq
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Lookup Tables



Pedrinho Valeria 



⃗T = (v1, v2, v3, …, vm)

Pedrinho Valeria 



⃗T = (v1, v2, v3, …, vm)

Pedrinho Valeria 

 is a commitment to elements  𝖢 si ∈ ⃗T



Importance

- Building blocks to many systems


- Efficiency: mostly do not depend of the size of the table


- Flexibility: zero-knowledge/succinctness/pre-computable
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¡¡¡Gracias!!!


Obrigado!!

arantxa@ethereum.org 

www.criptolatino.org 
@criptolatinoOrg 
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