Zero-knowledge Proofs

 and lookup tablesArantxa Zapico
Ethereum Foundation
ASCRYPTO. Quito, October 2023

Table of Contents

1. Proof Systems
2. Definition
3. Security
4. Zero-knowledge
5. Examples!
6. Lookup Tables
7. Definition
8. Importance
9. Examples

Proof Systems

$$
\geq
$$

Prover

Verifier

Peggy
Victor

Pedrinho

Valeria

Pedrinho

Valeria

Something is true

Something

Pedrinho

Valeria

Something is true

Something

Pedrinho

Something is true

Something

Something is true

Something

Something is true

Something

Examples of provers and verifiers

Examples of provers and verifiers

Me
Gmail

Examples of provers and verifiers

Google Cloud
Mobil Phone

Examples of provers and verifiers

You

Security at Club

Examples of provers and verifiers

Cryptobro
Block Builder

Something is true

Something

Something is true

Something

Completeness

Something is true

Something

Something is true

Something

Something is true

Something

Completeness
If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Something is true

Something

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

Something is true

Something

SoundnesS If something is false, then Verifier rejects with overwhelming probability

Something

Something

R is a PT decidable relation
$R=\{(x, w): \ldots\}$ is a PT decidable relation

$R=\{(x, w): \ldots\}$ is a PT decidable relation

Something is true

$R=\{(x, w): \ldots\}$ is a PT decidable relation

$$
x \in \mathscr{L}_{R}
$$

$R=\{(x, w): \ldots\}$ is a PT decidable relation

$$
x \in \mathscr{L}_{R}
$$

$$
\mathscr{L}_{R}=\{x \text { s.t. } \exists w \text { s.t. }(x, w) \in R\}
$$

You

Security at Club

You

Security at Club

$R=\{(x, w): x$ is a name and w an age above 18

$R=\{(x, w): x$ is a name and w an age above 18
"I am in \mathscr{L}_{R} ": there exists a w (my age) such that $(\mathrm{me}, w) \in R$

Something is true

Something

Soundness If something is false, then Verifier rejects with overwhelming probability

$$
R=\{(x, w): \text { something }\}
$$

Something

Soundness If something is false, then Verifier rejects with overwhelming probability

$$
R=\{(x, w): \text { something }\}
$$

$$
x, R
$$

SoundnesS If something is false, then Verifier rejects with overwhelming probability

$$
R=\{(x, w): \text { something }\}
$$

$$
x, R
$$

$\operatorname{Pedrinho}((x, w), R)$

Valeria (x, R)

Completeness
If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability Zero-Knowledge The Verifier does not learn anything but the truth of Something

$\operatorname{Pedrinho}((x, w), R)$

Valeria (x, R)

$\operatorname{Pedrinho}((x, w), R)$

Valeria (x, R)

Probabilistic Polynomial Time Algorithms

$\operatorname{Prover}(s r s,(x, w))$

Verifier $(s r s, x)$

Probabilistic Polynomial Time Algorithms

$\operatorname{Prover}(s r s,(x, w))$

0

Verifier (srs, x)

$(s r s, \tau) \leftarrow \mathscr{K}(\lambda)$

$\operatorname{Prover}(s r s,(x, w))$

0
1

Verifier (srs, x)

$$
R=\{(x, w) \text { : something }\}
$$

srs

Verifier (srs, x)

$$
R=\{(x, w): \text { something }\}
$$

srs
\mathscr{P}
$\operatorname{Prover}(\operatorname{srs},(x, w))$

0

Verifier (srs, x)

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

Examples of provers and verifiers

Google Cloud
Mobil Phone

Examples of provers and verifiers

You

Security at Club
(Perfect) Completeness

(Perfect) Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

(Perfect) Completeness

If $x \in \mathscr{L}_{R}$ and both, Prover and Verifier, follow the procedure, Verifier accepts

(Perfect) Completeness

If $x \in \mathscr{L}_{R}$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$
\operatorname{Pr}\left[\mathscr{V}(s r s, x, \pi)=1 ; \quad \begin{array}{r}
(s r s, \tau) \leftarrow \mathscr{R}(\lambda) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right]=1
$$

(Perfect) Completeness

If $x \in \mathscr{L}_{R}$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$
(s r s, \tau) \leftarrow \mathscr{K}(\lambda)
$$

(Perfect) Completeness

If $x \in \mathscr{L}_{R}$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$
\pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))
$$

(Perfect) Completeness

If $x \in \mathscr{L}_{R}$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$
\left.\begin{array}{r}
(s r s, \tau) \leftarrow \mathscr{K}(\lambda) \\
\pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))
\end{array}\right]
$$

(Perfect) Completeness

$$
\text { If } x \in \mathscr{L}_{R} \text { and both, Prover and Verifier, follow the procedure, Verifier accepts }
$$

$$
\operatorname{Pr}[\mathscr{V}(\operatorname{srs}, x, \pi)=1
$$

(Perfect) Completeness

$$
\text { If } x \in \mathscr{L}_{R} \text { and both, Prover and Verifier, follow the procedure, Verifier accepts }
$$

$$
\operatorname{Pr}[\mathscr{V}(\operatorname{srs}, x, \pi)=1
$$

$$
=1
$$

(Perfect) Completeness

If $x \in \mathscr{L}_{R}$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$
\operatorname{Pr}\left[\mathscr{V}(s r s, x, \pi)=1 ; \quad \begin{array}{r}
(s r s, \tau) \leftarrow \mathscr{R}(\lambda) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right]=1
$$

(Perfect) Completeness

If $x \in \mathscr{L}_{R}$ and both, Prover and Verifier, follow the procedure, Verifier accepts

$$
\operatorname{Pr}\left[\mathscr{V}(s r s, x, \pi)=1 ; \quad \begin{array}{r}
(s r s, \tau) \leftarrow \mathscr{K}(\lambda) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right]=1
$$

$$
R=\{(x, w): \text { something }\}
$$

srs
\mathscr{P}
$\operatorname{Prover}(\operatorname{srs},(x, w))$

0

Verifier (srs, x)

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

$$
R=\{(x, w): \text { something }\}
$$

srs

$\operatorname{Prover}(\operatorname{srs},(x, w))$

Completeness $\operatorname{Pr}\left[\mathscr{V}(\operatorname{srs}, x, \pi)=1 ; \begin{array}{r}(\operatorname{srs}, \tau) \leftarrow \mathscr{K}(\lambda) \\ \pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))\end{array}\right]=1$

Soundness If something is false, then Verifier rejects with overwhelming probability

(Computational) Soundness

If something is false, then Verifier rejects with overwhelming probability

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w$ s.t. $(x, w) \in R$, then Verifier rejects with overwhelming probability

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w$ s.t. $(x, w) \in R$, then Verifier rejects with overwhelming probability

$$
\operatorname{Pr}\left[\mathscr{V}(\operatorname{srs}, x, \pi)=1 ; \begin{array}{c}
(\operatorname{srs}, \tau) \leftarrow \mathscr{K} \\
(x, \pi) \leftarrow \mathscr{A}(\operatorname{srs})
\end{array}\right] \leq \operatorname{negl}(\lambda)
$$

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w s . t .(x, w) \in R$, then Verifier rejects with overwhelming probability

$$
(s r s, \tau) \leftarrow \mathscr{K}
$$

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w s . t .(x, w) \in R$, then Verifier rejects with overwhelming probability

$$
(x, \pi) \leftarrow \mathscr{A}(\operatorname{srs})
$$

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w s . t .(x, w) \in R$, then Verifier rejects with overwhelming probability

$\operatorname{Pr}[\mathscr{V}(s r s, x, \pi)=1$

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w$ s.t. $(x, w) \in R$, then Verifier rejects with overwhelming probability

$$
\operatorname{Pr}\left[\mathscr{V}(\operatorname{srs}, x, \pi)=1 ; \begin{array}{c}
(\operatorname{srs}, \tau) \leftarrow \mathscr{K} \\
(x, \pi) \leftarrow \mathscr{A}(\operatorname{srs})
\end{array}\right] \leq \operatorname{negl}(\lambda)
$$

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w$ s.t. $(x, w) \in R$, then Verifier rejects with overwhelming probability
$\operatorname{Pr}\left[\mathscr{V}(s r s, x, \pi)=1 ; \begin{array}{c}(s r s, \tau) \leftarrow \mathscr{K} \\ (x, \pi) \leftarrow \mathscr{A}(s r s)\end{array}\right] \leq \operatorname{negl}(\lambda)$

(Computational) Soundness

If $x \notin \mathscr{L}_{R}$, then Verifier rejects with overwhelming probability
If $\nexists w$ s.t. $(x, w) \in R$, then Verifier rejects with overwhelming probability

We are actually talking about

$$
R=\{(x, w): \text { something }\}
$$

srs

$\operatorname{Prover}(\operatorname{srs},(x, w))$

Completeness $\operatorname{Pr}\left[\mathscr{V}(\operatorname{srs}, x, \pi)=1 ; \begin{array}{r}(\operatorname{srs}, \tau) \leftarrow \mathscr{K}(\lambda) \\ \pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))\end{array}\right]=1$

Soundness If something is false, then Verifier rejects with overwhelming probability

$$
R=\{(x, w): \text { something }\}
$$

srs

$\operatorname{Prover}(\operatorname{srs},(x, w))$
Verifier (srs, x)
Completeness $\quad \operatorname{Pr}\left[\mathscr{V}(\operatorname{srs}, x, \pi)=1 ; \begin{array}{r}(\operatorname{srs}, \tau) \leftarrow \mathscr{K}(\lambda) \\ \pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))\end{array}\right]=1$
Soundness $\quad \operatorname{Pr}\left[\mathscr{V}(s r s, x, \pi)=1 ; \begin{array}{c}(s r s, \tau) \leftarrow \mathscr{K} \\ (x, \pi) \leftarrow \mathscr{A}(s r s)\end{array}\right] \leq \operatorname{negl}(\lambda)$

Zero-Knowledge The Verifier does not learn anything but the truth of Something

Examples of provers and verifiers

Me
Gmail

Examples of provers and verifiers

Me

Gmail

There exists a password for this email address

Examples of provers and verifiers

Me

Gmail

There exists a password for this email address

Not enough!!!
I should know it

Knowledge-soundness

There exists a PT algorithm \mathscr{E}, the extractor, such that for every malicious prover $\mathscr{P} *:$

Knowledge-soundness

There exists a PT algorithm \mathscr{E}, the extractor, such that for every malicious prover $\mathscr{P} \%$:

$$
\operatorname{Pr}\left[\begin{array}{cc}
(x, w) \notin R \wedge & (s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V}(s r s, x, \pi)=1 & (x, \pi) \leftarrow \mathscr{P} *(s r s) \\
w \leftarrow \mathscr{E}(s r s, x, \pi)
\end{array}\right] \leq \operatorname{negl}(\lambda)
$$

Knowledge-soundness

There exists a PT algorithm \mathscr{E}, the extractor, such that for every malicious prover $\mathscr{P} *$:

$$
\operatorname{Pr}\left[\begin{array}{cc}
(x, w) \notin R \wedge & (s r s, \tau) \leftarrow \mathscr{R} \\
\mathscr{V}(s r s, x, \pi)=1 & (x, \pi) \leftarrow \mathscr{P} *(s r s) \\
w \leftarrow \mathscr{E}(s r s, x, \pi)
\end{array}\right] \leq \operatorname{negl}(\lambda)
$$

Knowledge-soundness

There exists a PT algorithm \mathscr{E}, the extractor, such that for every malicious prover $\mathscr{P} \%$:

$$
\operatorname{Pr}\left[\begin{array}{cc}
(x, w) \notin R \wedge & (\operatorname{srs}, \tau) \leftarrow \mathscr{R} \\
\mathscr{V}(\operatorname{srs}, x, \pi)=1 & ;(x, \pi) \leftarrow \mathscr{P} *(s r s) \\
w \leftarrow \mathscr{E}(s r s, x, \pi)
\end{array}\right] \leq \operatorname{negl}(\lambda)
$$

An argument that satisfies
knowledge-soundness
is an
argument of knowledge

$$
R=\{(x, w): \text { something }\}
$$

srs

$\operatorname{Prover}(\operatorname{srs},(x, w))$
Verifier (srs, x)
Completeness $\quad \operatorname{Pr}\left[\mathscr{V}(s r s, x, \pi)=1 ; \begin{array}{r}(\operatorname{srs}, \tau) \leftarrow \mathscr{K}(\lambda) \\ \pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))\end{array}\right]=1$

Zero-Knowledge The Verifier does not learn anything but the truth of Something

Zero-knowledge

The Verifier does not learn anything but the truth of Something

Zero-knowledge

The prover output is almost random, therefore, could be anything

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V} *(s r s, \pi)=1 ; \\
x \leftarrow \mathscr{V} *(s r s) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right] \approx
$$

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{R} \\
\mathscr{V} *\left(s r s, \pi_{s i m}\right)=1 ; \quad \\
x \leftarrow \mathscr{V} *(s r s) \\
\left.\pi_{s i m} \leftarrow \mathcal{S}(s r s, \tau, x)\right)
\end{array}\right]
$$

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

$$
\operatorname{Pr}\left[\mathscr{V} *(s r s, \pi)=1 ; \begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{R} \\
x \leftarrow \mathscr{V} *(s r s) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right] \approx
$$

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V} *(s r s, \pi)=1 ; \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right] \approx
$$

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V} *(s r s, \pi)=1 ; \\
x \leftarrow \mathscr{V} *(s r s) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right] \approx
$$

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{R} \\
\mathscr{V} *\left(s r s, \pi_{s i m}\right)=1 ; \quad \\
x \leftarrow \mathscr{V} *(s r s) \\
\left.\pi_{s i m} \leftarrow \mathcal{S}(s r s, \tau, x)\right)
\end{array}\right]
$$

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V} *\left(s r s, \pi_{s i m}\right)=1 ; \\
x \leftarrow \mathscr{V} *(s r s) \\
\left.\pi_{s i m} \leftarrow \mathcal{S}(s r s, \tau, x)\right)
\end{array}\right]
$$

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V} *\left(s r s, \pi_{s i m}\right)=1 ; \quad x \leftarrow \mathscr{V} *(s r s) \\
\left.\pi_{s i m} \leftarrow \mathcal{S}(s r s, \tau, x)\right)
\end{array}\right]
$$

Zero-knowledge

There exists a PT simulator \mathcal{S}, with access to the private information, such that for all \mathscr{V}^{*}

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V} *(s r s, \pi)=1 ; \\
x \leftarrow \mathscr{V} *(s r s) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right] \approx
$$

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{R} \\
\mathscr{V} *\left(s r s, \pi_{s i m}\right)=1 ; \quad \\
x \leftarrow \mathscr{V} *(s r s) \\
\left.\pi_{s i m} \leftarrow \mathcal{S}(s r s, \tau, x)\right)
\end{array}\right]
$$

$$
R=\{(x, w): \text { something }\}
$$

srs

$\operatorname{Prover}(\operatorname{srs},(x, w))$
Verifier (srs, x)

$$
\text { Completeness } \quad \operatorname{Pr}\left[\mathscr{V}(\operatorname{srs}, x, \pi)=1 ; \begin{array}{r}
(\operatorname{srs}, \tau) \leftarrow \mathscr{K}(\lambda) \\
\pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))
\end{array}\right]=1
$$

Knowledge-Soundness $\quad \operatorname{Pr}\left[\begin{array}{c}(x, w) \notin R \wedge \underset{(s r s, \tau) \leftarrow \mathscr{H}}{(x, \pi) \leftarrow \mathscr{A}(s r s)} \\ \mathscr{V}(s r s, x, \pi)=1 \\ w \leftarrow \mathscr{E}(s r s, x, \pi)\end{array}\right] \leq \operatorname{negl(\lambda)}$
Zero-Knowledge The Verifier does not learn anything but the truth of Something

$$
R=\{(x, w): \text { something }\}
$$

srs

$\operatorname{Prover}(\operatorname{srs},(x, w))$

0

π

Completeness $\quad \operatorname{Pr}\left[\mathscr{V}(\operatorname{srs}, x, \pi)=1 ; \begin{array}{r}(\operatorname{srs}, \tau) \leftarrow \mathscr{K}(\lambda) \\ \pi \leftarrow \mathscr{P}(\operatorname{srs},(x, w))\end{array}\right]=1$

Zero-Knowledge

$$
\operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V} *(s r s, \pi)=1 ; \\
\pi \leftarrow \mathscr{V} *(s r s) \\
\pi \leftarrow \mathscr{P}(s r s,(x, w))
\end{array}\right] \approx \operatorname{Pr}\left[\begin{array}{c}
(s r s, \tau) \leftarrow \mathscr{K} \\
\mathscr{V}\left(s r s, \pi_{s i m}\right)=1 ; \\
x \leftarrow \mathscr{V} *(s r s) \\
\\
\left.\pi_{s i m} \leftarrow \mathcal{S}(s r s, \tau, x)\right)
\end{array}\right]
$$

Everything that can be proven
(NP) can be proven in
Zero-Knowledge

Knowledge of discrete log

Knowledge of discrete log

Discrete logs are hard to compute
(In some groups)

Knowledge of discrete log

> | Discrete logs are hard to compute |
| :--- |
| (In some groups) |

Let \mathbb{G} be a cyclic group of order q (prime) and g be a generator.

Knowledge of discrete log

Discrete logs are hard to compute (In some groups)

Let \mathbb{G} be a cyclic group of order q (prime) and g be a generator.

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

Knowledge of discrete log

Discrete logs are hard to compute
(In some groups)

Let \mathbb{G} be a cyclic group of order q (prime) and g be a generator.

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

Famous secret-key, public-key couple:

$$
s k \leftarrow \mathbb{Z}_{q}, \quad p k=g^{s k}
$$

Knowledge of discrete log - Schnorr

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

\mathscr{P}
\mathscr{V}

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$
\mathscr{V}
$((g, \mathbb{G}), h)$

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

$$
\begin{aligned}
& r \longleftarrow \mathbb{Z} q \\
& u=g^{r}
\end{aligned}
$$

$((g, \mathbb{G}), h)$

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

$$
\begin{aligned}
& r \leftarrow \mathbb{Z}_{q} \\
& u=g^{r}
\end{aligned}
$$

$((g, \mathbb{G}), h)$

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

$$
\begin{aligned}
& r \leftarrow \mathbb{Z}_{q} \\
& u=g^{r}
\end{aligned}
$$

$((g, \mathbb{G}), h)$
\qquad

$$
c \leftarrow \mathbb{Z}_{q}
$$

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

$$
\begin{aligned}
& r \leftarrow \mathbb{Z}_{q} \\
& u=g^{r}
\end{aligned}
$$

$((g, \mathbb{G}), h)$
\qquad

$$
c \leftarrow \mathbb{Z}_{q}
$$

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

$$
\begin{aligned}
& r \leftarrow \mathbb{Z}_{q} \\
& u=g^{r}
\end{aligned}
$$

\qquad
c

$$
z=r+c x
$$

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

$$
\begin{aligned}
& r \leftarrow \mathbb{Z}_{q} \\
& u=g^{r}
\end{aligned}
$$

\qquad
c
$z=r+c x$

$((g, \mathbb{G}), h)$

$$
c \leftarrow \mathbb{Z}_{q}
$$

\qquad

Knowledge of discrete log - Schnorr

$$
R=\left\{(x, h): x \in \mathbb{Z}_{q} \wedge h \in \mathbb{G} \wedge h=g^{x}\right\}
$$

$((h, \mathbb{G}),(x, h))$

$$
\begin{aligned}
& r \leftarrow \mathbb{Z}_{q} \\
& u=g^{r}
\end{aligned}
$$

\qquad
c
$z=r+c x$

$((g, \mathbb{G}), h)$

$$
c \leftarrow \mathbb{Z}_{q}
$$

$$
g^{z}=u h^{c}
$$

Completeness

Completeness

Theorem: The scheme satisfies completeness

Completeness

Theorem: The scheme satisfies completeness

$$
g^{z}=u h^{c}
$$

Completeness

Theorem: The scheme satisfies completeness

$$
g^{z}=u h^{c}
$$

Completeness

Theorem: The scheme satisfies completeness

$$
\begin{aligned}
g^{z} & =u h^{c} \\
g^{r+c x} & =u h^{c}
\end{aligned}
$$

Completeness

Theorem: The scheme satisfies completeness

$$
\begin{aligned}
g^{z} & =u h^{c} \\
g^{r+c x} & =u h^{c}
\end{aligned}
$$

Completeness

Theorem: The scheme satisfies completeness

$$
\begin{aligned}
g^{z} & =u h^{c} \\
g^{r+c x} & =u h^{c} \\
g^{r+c x} & =g^{r} h^{c}
\end{aligned}
$$

Completeness

Theorem: The scheme satisfies completeness

$$
\begin{aligned}
g^{z} & =u h^{c} \\
g^{r+c x} & =u h^{c} \\
g^{r+c x} & =g^{r} h^{c}
\end{aligned}
$$

Completeness

Theorem: The scheme satisfies completeness

$$
\begin{aligned}
g^{z} & =u h^{c} \\
g^{r+c x} & =u h^{c} \\
g^{r+c x} & =g^{r} h^{c} \\
g^{r+c x} & =g^{r}\left(g^{x}\right)^{c}
\end{aligned}
$$

Knowledge-soundness

Knowledge-soundness

Let \mathscr{P} * be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

Knowledge-soundness

Let $\mathscr{P} *$ be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

- \mathscr{E} runs prover \mathscr{D}^{*} to obtain initial message u

Knowledge-soundness

Let $\mathscr{P} *$ be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

- \mathscr{E} runs prover $\mathscr{P} *$ to obtain initial message u
- Send $c_{1} \leftarrow \mathbb{Z}_{q}$ to $\mathscr{P} *$ and obtains response z_{1}

Knowledge-soundness

Let \mathscr{P} * be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

- \mathscr{E} runs prover $\mathscr{P} \%$ to obtain initial message u
- Send $c_{1} \leftarrow \mathbb{Z}_{q}$ to \mathscr{P}^{*} and obtains response z_{1}
- Rewind \mathscr{P}^{*} to its state after u

Knowledge-soundness

Let \mathscr{P} * be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

- \mathscr{E} runs prover $\mathscr{P} *$ to obtain initial message u
- Send $c_{1} \leftarrow \mathbb{Z}_{q}$ to \mathscr{P}^{*} and obtains response z_{1}
- Rewind $\mathscr{P} *$ to its state after u
- Send $c_{2} \leftarrow \mathbb{Z}_{q}$ and get response z_{2}

Knowledge-soundness

Let \mathscr{P} * be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

- \mathscr{E} runs prover $\mathscr{P} *$ to obtain initial message u
- Send $c_{1} \leftarrow \mathbb{Z}_{q}$ to \mathscr{P}^{*} and obtains response z_{1}
- Rewind \mathscr{P}^{*} to its state after u
- Send $c_{2} \leftarrow \mathbb{Z}_{q}$ and get response z_{2}
- Output $x=\frac{z_{1}-z_{2}}{c_{1}-c_{1}} \in \mathbb{Z}_{q}$

Knowledge-soundness

Let \mathscr{P} * be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

- \mathscr{E} runs prover \mathscr{P}^{*} to obtain initial message u
- Send $c_{1} \leftarrow \mathbb{Z}_{q}$ to \mathscr{P}^{*} and obtains response z_{1}
- Rewind \mathscr{P}^{*} to its state after u
- Send $c_{2} \leftarrow \mathbb{Z}_{q}$ and get response z_{2}
- Output $x=\frac{z_{1}-z_{2}}{c_{1}-c_{1}} \in \mathbb{Z}_{q}$

With probability $\epsilon^{2}, \quad g^{z_{1}}=u h^{c_{1}} \wedge g^{z_{2}}=u h^{c_{2}}$. Then,

Knowledge-soundness

Let \mathscr{P} * be a malicious prover that convinces the verifier with probability ϵ. We construct the extractor \mathscr{E} as follows:

- \mathscr{E} runs prover $\mathscr{P} *$ to obtain initial message u
- Send $c_{1} \leftarrow \mathbb{Z}_{q}$ to \mathscr{P}^{*} and obtains response z_{1}
- Rewind \mathscr{P}^{*} to its state after u
- Send $c_{2} \leftarrow \mathbb{Z}_{q}$ and get response z_{2}
- Output $x=\frac{z_{1}-z_{2}}{c_{1}-c_{1}} \in \mathbb{Z}_{q}$

With probability $\epsilon^{2}, \quad g^{z_{1}}=u h^{c_{1}} \wedge g^{z_{2}}=u h^{c_{2}}$. Then,

$$
\frac{g^{z_{1}}}{h^{c_{1}}}=\frac{g^{z_{2}}}{h^{c_{2}}} \rightarrow \frac{g^{z_{1}}}{g^{z_{2}}}=\frac{h^{c_{1}}}{h^{c_{2}}} \rightarrow g^{z_{1}-z_{2}}=h^{c_{1}-c_{2}} \rightarrow g^{z_{1}-z_{2}}=\left(g^{x}\right)^{\left(c_{1}-c_{2}\right)} \rightarrow g^{\frac{z_{1}-z_{2}}{c_{1}-c_{2}}}=\left(g^{x}\right)
$$

Honest-Verifier Zero-knowledge

We need to construct a simulator $\mathcal{S}(h)$ that outputs an accepting proof with the same distribution than an honestly generated one (random)

Honest-Verifier Zero-knowledge

We need to construct a simulator $\mathcal{S}(h)$ that outputs an accepting proof with the same distribution than an honestly generated one (random)

$$
-\quad z \leftarrow \mathbb{Z}_{q}
$$

Honest-Verifier Zero-knowledge

We need to construct a simulator $\mathcal{S}(h)$ that outputs an accepting proof with the same distribution than an honestly generated one (random)

$$
\begin{array}{ll}
- & z \leftarrow \mathbb{Z}_{q} \\
- & c \leftarrow \mathbb{Z}_{q}
\end{array}
$$

Honest-Verifier Zero-knowledge

We need to construct a simulator $\mathcal{S}(h)$ that outputs an accepting proof with the same distribution than an honestly generated one (random)

$$
\begin{aligned}
- & z
\end{aligned} \mathbb{Z}_{q} \quad \begin{aligned}
& \\
&- \leftarrow \mathbb{Z}_{q} \\
&-u=\frac{g^{z}}{h^{c}}
\end{aligned} \quad g^{z}=u h^{c}
$$

Honest-Verifier Zero-knowledge

We need to construct a simulator $\mathcal{S}(h)$ that outputs an accepting proof with the same distribution than an honestly generated one (random)
$-z \leftarrow \mathbb{Z}_{q}$
$-c \leftarrow \mathbb{Z}_{q}$
$-u=\frac{g^{z}}{h^{c}}$
$g^{z}=u h^{c}$

- Output (u, c, z)

Lookup Tables

Pedrinho

Valeria

$$
\vec{T}=\left(v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right)
$$

C is a commitment to elements $s_{i} \in \vec{T}$

Pedrinho

Valeria

Importance

- Building blocks to many systems
- Efficiency: mostly do not depend of the size of the table
- Flexibility: zero-knowledge/succinctness/pre-computable

Some examples

Some examples

$$
\vec{T}=(18,19, \ldots, 120)
$$

Some examples

C is your age

$$
\vec{T}=(18,19, \ldots, 120)
$$

Some examples

C is your age

$$
\begin{gathered}
\vec{T}=(18,19, \ldots, 120) \\
\overrightarrow{x_{1}} \\
f\left(x_{1}\right) \\
\left.\vec{T}=\begin{array}{cc}
x_{2} & f\left(x_{2}\right) \\
\vdots & \vdots \\
x_{m} & f\left(x_{m}\right)
\end{array}\right)
\end{gathered}
$$

Some examples

C is your age

$$
\vec{T}=(18,19, \ldots, 120)
$$

$$
\vec{T}=\begin{array}{cc}
x_{1} & f\left(x_{1}\right) \\
x_{2} & f\left(x_{2}\right) \\
\vdots & \vdots \\
x_{m} & f\left(x_{m}\right)
\end{array}
$$

C is $\left(x_{i}, y_{i}\right)$

Some examples

C is your age

$$
\begin{aligned}
& \vec{T}=(18,19, \ldots, 120) \\
& x_{1} \quad f\left(x_{1}\right) \\
& \vec{T}=\begin{array}{cc}
x_{2} & f\left(x_{2}\right) \\
\vdots & \vdots
\end{array} \\
& x_{m} f\left(x_{m}\right) \\
& \vec{T}=\left(\text { user }_{1}, \ldots, \text { user }_{m}\right)
\end{aligned}
$$

C is $\left(x_{i}, y_{i}\right)$

Some examples

C is your age

$$
\begin{gathered}
\vec{T}=(18,19, \ldots, 120) \\
x_{1} \\
\vec{T}=\begin{array}{cc}
x_{2} & f\left(x_{1}\right) \\
\vdots & \vdots \\
\left.x_{2}\right) & f\left(x_{m}\right)
\end{array}
\end{gathered}
$$

C is $\left(x_{i}, y_{i}\right)$

C is my user name

$$
\vec{T}=\left(\text { user }_{1}, \ldots, \text { user }_{m}\right)
$$

Some examples

C is your age

$$
\begin{gathered}
\vec{T}=(18,19, \ldots, 120) \\
x_{1} \\
\left.\vec{T}=\begin{array}{c}
x_{2} \\
\\
\vdots \\
\\
\left.x_{1}\right) \\
x_{m}
\end{array}\right) \\
\vdots \\
\vec{T}=\left(x_{m}\right)
\end{gathered}
$$

Membership proofs from Lookup tables

C is my user name

$$
\vec{T}=\left(\text { user }_{1}, \ldots, \text { user }_{m}\right)
$$

Membership proofs from Lookup tables

I am an authorized member/
my name is on the list

C is my user name

$$
\vec{T}=\left(\text { user }_{1}, \ldots, \text { user }_{m}\right)
$$

Membership proofs from Lookup tables

C is my user name

$$
\vec{T}=\left(\text { user }_{1}, \ldots, \text { user }_{m}\right)
$$

Membership proofs from Lookup tables

C is my user name

$$
\vec{T}=\left(\text { user }_{1}, \ldots, \text { user }_{m}\right)
$$

$$
s k \leftarrow \mathbb{Z}_{q}
$$

Membership proofs from Lookup tables

C is my user name

$$
\vec{T}=\left(\text { user }_{1}, \ldots, \text { user }_{m}\right)
$$

$$
\begin{aligned}
s k & \leftarrow \mathbb{Z}_{q} \\
p k & =g^{s k}
\end{aligned}
$$

Membership proofs from Lookup tables

C is my user name

$$
\begin{aligned}
s k & \leftarrow \mathbb{Z}_{q} \\
p k & =g^{g k}
\end{aligned}
$$

$$
\vec{T}=\left(p k_{1}, \ldots, p k_{m}\right)
$$

Membership proofs from Lookup tables

C is my user name

$$
\begin{aligned}
s k & \leftarrow \mathbb{Z}_{q} \\
p k & =g^{s k}
\end{aligned}
$$

$$
\vec{T}=\left(p k_{1}, \ldots, p k_{m}\right)
$$

$$
\mathrm{C}=\operatorname{Com}(p k)=g^{x+r . s k}
$$

Membership proofs from Lookup tables

C is my user name

$$
\begin{aligned}
s k & \leftarrow \mathbb{Z}_{q} \\
p k & =g^{s k}
\end{aligned}
$$

$$
\vec{T}=\left(p k_{1}, \ldots, p k_{m}\right)
$$

$$
\mathrm{C}=\operatorname{Com}(p k)=g^{x+r . s k}
$$

"I am authorized":

Membership proofs from Lookup tables

C is my user name

$$
\begin{aligned}
s k & \leftarrow \mathbb{Z}_{q} \\
p k & =g^{g k}
\end{aligned}
$$

$$
\vec{T}=\left(p k_{1}, \ldots, p k_{m}\right)
$$

$$
\mathrm{C}=\operatorname{Com}(p k)=g^{x+r . s k}
$$

"I am authorized":

1. Use a lookup table to prove in zero-knowledge C is a commitment to something in \vec{T}

Membership proofs from Lookup tables

C is my user name

$$
\begin{aligned}
& s k \leftarrow \mathbb{Z}_{q} \\
& p k=g^{s k}
\end{aligned}
$$

$$
\vec{T}=\left(p k_{1}, \ldots, p k_{m}\right)
$$

$$
\mathrm{C}=\operatorname{Com}(p k)=g^{x+r . s k}
$$

"I am authorized":

1. Use a lookup table to prove in zero-knowledge C is a commitment to something in \vec{T}
2. Use Schnorr to prove knowledge of the corresponding sk

Membership proofs from Lookup tables

C is my user name

$$
\begin{aligned}
& s k \leftarrow \mathbb{Z}_{q} \\
& p k=g^{s k}
\end{aligned}
$$

$$
\vec{T}=\left(p k_{1}, \ldots, p k_{m}\right)
$$

$$
\mathrm{C}=\operatorname{Com}(p k)=g^{x+r . s k}
$$

"I am authorized":

1. Use a lookup table to prove in zero-knowledge C is a commitment to something in \vec{T}
2. Use Schnorr to prove knowledge of the corresponding sk
3. It is me!

iiiGracias!!!

Obrigado!!

arantxa@ethereum.org
www. criptolatino.org
@criptolatinoOrg

