
Arantxa Zapico

Ethereum Foundation

ASCRYPTO. Quito, October 2023

Zero-knowledge Proofs
and lookup tables

Table of Contents

1. Proof Systems
1. Definition
2. Security
3. Zero-knowledge
4. Examples!

2. Lookup Tables
1. Definition
2. Importance
3. Examples

Proof Systems

Prover

Prover Verifier

Peggy Victor

Pedrinho Valeria

Something is true

Pedrinho Valeria

Something

Something is true

Pedrinho Valeria

Something

Something is true

Pedrinho Valeria

Something

Pedrinho Valeria

Something is true

Something

Pedrinho Valeria

Something is true

Something

Pedrinho Valeria

Something is true

Examples of provers and verifiers

Examples of provers and verifiers

Me Gmail

Examples of provers and verifiers

Google Cloud Mobil Phone

Examples of provers and verifiers

You Security at Club

Examples of provers and verifiers

Cryptobro Block Builder

Something

Pedrinho Valeria

Something is true

Something

Pedrinho Valeria

Completeness

Something is true

Something

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Something is true

Something

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness

Something is true

Something

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Something is true

Something

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge

Something is true

Something

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

Something is true

Something

Something

R is a PT decidable relation

 is a PT decidable relationR = {(x, w) : …}

Something is true

 is a PT decidable relationR = {(x, w) : …}

x ∈ ℒR

 is a PT decidable relationR = {(x, w) : …}

x ∈ ℒR

ℒR = {x s . t . ∃w s . t . (x, w) ∈ R}

 is a PT decidable relationR = {(x, w) : …}

You Security at Club

You Security at Club

 is a name and an age above 18 R = {(x, w) : x w

You Security at Club

 is a name and an age above 18 R = {(x, w) : x w

“I am in ”: there exists a (my age) such that

 (me,)

ℒR w
w ∈ R

Something

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

Something is true

Something

R = {(x, w) : something}

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

 x, R

Pedrinho Valeria

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

R = {(x, w) : something}

x, R

Pedrinho ((x, w), R) Valeria (x, R)

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

R = {(x, w) : something}

Pedrinho ((x, w), R) Valeria (x, R)

Pedrinho ((x, w), R) Valeria (x, R)

Probabilistic Polynomial Time Algorithms

Probabilistic Polynomial Time Algorithms

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

(srs, τ) ← 𝒦(λ)

srs

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

R = {(x, w) : something}

srs

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

R = {(x, w) : something}

Examples of provers and verifiers

Google Cloud Mobil Phone

Examples of provers and verifiers

You Security at Club

(Perfect) Completeness

(Perfect) Completeness

If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

(Perfect) Completeness

If and both, Prover and Verifier, follow the procedure, Verifier acceptsx ∈ ℒR

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

srs

Completeness If Something is indeed true and both, Prover and Verifier, follow the procedure, Verifier accepts

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

R = {(x, w) : something}

srs

Completeness

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

R = {(x, w) : something}

(Computational) Soundness
If something is false, then Verifier rejects with overwhelming probability

(Computational) Soundness
If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

(Computational) Soundness
If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

(Computational) Soundness

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

(Computational) Soundness

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

(Computational) Soundness

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

(Computational) Soundness

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

(Computational) Soundness

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

(Computational) Soundness

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

(Computational) Soundness
If , then Verifier rejects with overwhelming probabilityx ∉ ℒR

If , then Verifier rejects with overwhelming probability∄ w s . t . (x, w) ∈ R

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

We are actually
talking about
arguments

srs

Completeness

Soundness If something is false, then Verifier rejects with overwhelming probability

Zero-Knowledge The Verifier does not learn anything but the truth of Something

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

R = {(x, w) : something}

srs

Completeness

Soundness

Zero-Knowledge The Verifier does not learn anything but the truth of Something

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦

(x, π) ← 𝒜(srs)] ≤ negl(λ)

R = {(x, w) : something}

Examples of provers and verifiers

Me Gmail

Examples of provers and verifiers

Me Gmail

There exists a password for this email address

Examples of provers and verifiers

Me Gmail

There exists a password for this email address

Not enough!!!

I should know it

Knowledge-soundness

There exists a PT algorithm , the extractor, such that for every
malicious prover :

ℰ
𝒫*

Knowledge-soundness

Pr
(x, w) ∉ R ∧

𝒱(srs, x, π) = 1
;

(srs, τ) ← 𝒦
(x, π) ← 𝒫*(srs)
w ← ℰ(srs, x, π)

≤ negl(λ)

There exists a PT algorithm , the extractor, such that for every
malicious prover :

ℰ
𝒫*

Knowledge-soundness

Pr
(x, w) ∉ R ∧

𝒱(srs, x, π) = 1
;

(srs, τ) ← 𝒦
(x, π) ← 𝒫*(srs)
w ← ℰ(srs, x, π)

≤ negl(λ)

There exists a PT algorithm , the extractor, such that for every
malicious prover :

ℰ
𝒫*

Knowledge-soundness

Pr
(x, w) ∉ R ∧

𝒱(srs, x, π) = 1
;

(srs, τ) ← 𝒦
(x, π) ← 𝒫*(srs)
w ← ℰ(srs, x, π)

≤ negl(λ)

An argument that satisfies

 knowledge-soundness

is an

 argument of knowledge

There exists a PT algorithm , the extractor, such that for every
malicious prover :

ℰ
𝒫*

srs

Completeness

Knowledge-Soundness

Zero-Knowledge The Verifier does not learn anything but the truth of Something

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

Pr
(x, w) ∉ R ∧

𝒱(srs, x, π) = 1
;

(srs, τ) ← 𝒦
(x, π) ← 𝒫*(srs)
w ← ℰ(srs, x, π)

≤ negl(λ)

R = {(x, w) : something}

Zero-knowledge
The Verifier does not learn anything but the truth of Something

Zero-knowledge
The prover output is almost random, therefore, could be

anything

Zero-knowledge
There exists a PT simulator , with access to the private

information, such that for all
𝒮

𝒱*

Zero-knowledge

Pr 𝒱*(srs, π) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

π ← 𝒫(srs, (x, w))
≈

Pr 𝒱*(srs, πsim) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

πsim ← 𝒮(srs, τ, x))

There exists a PT simulator , with access to the private
information, such that for all

𝒮
𝒱*

Zero-knowledge

Pr 𝒱*(srs, π) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

π ← 𝒫(srs, (x, w))
≈

There exists a PT simulator , with access to the private
information, such that for all

𝒮
𝒱*

Zero-knowledge

Pr 𝒱*(srs, π) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

π ← 𝒫(srs, (x, w))
≈

There exists a PT simulator , with access to the private
information, such that for all

𝒮
𝒱*

Zero-knowledge

Pr 𝒱*(srs, π) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

π ← 𝒫(srs, (x, w))
≈

Pr 𝒱*(srs, πsim) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

πsim ← 𝒮(srs, τ, x))

There exists a PT simulator , with access to the private
information, such that for all

𝒮
𝒱*

Zero-knowledge

Pr 𝒱*(srs, πsim) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

πsim ← 𝒮(srs, τ, x))

There exists a PT simulator , with access to the private
information, such that for all

𝒮
𝒱*

Zero-knowledge

Pr 𝒱*(srs, πsim) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

πsim ← 𝒮(srs, τ, x))

There exists a PT simulator , with access to the private
information, such that for all

𝒮
𝒱*

Zero-knowledge

Pr 𝒱*(srs, π) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

π ← 𝒫(srs, (x, w))
≈

Pr 𝒱*(srs, πsim) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

πsim ← 𝒮(srs, τ, x))

There exists a PT simulator , with access to the private
information, such that for all

𝒮
𝒱*

srs

Completeness

Knowledge-Soundness

Zero-Knowledge The Verifier does not learn anything but the truth of Something

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

Pr
(x, w) ∉ R ∧

𝒱(srs, x, π) = 1
;

(srs, τ) ← 𝒦
(x, π) ← 𝒜(srs)
w ← ℰ(srs, x, π)

≤ negl(λ)

R = {(x, w) : something}

srs

Completeness

Knowledge-Soundness

Zero-Knowledge

𝒫 𝒱
Prover (srs, (x, w)) Verifier (srs, x)

0

1

π

Pr [𝒱(srs, x, π) = 1;
(srs, τ) ← 𝒦(λ)

π ← 𝒫(srs, (x, w))] = 1

Pr
(x, w) ∉ R ∧

𝒱(srs, x, π) = 1
;

(srs, τ) ← 𝒦
(x, π) ← 𝒜(srs)
w ← ℰ(srs, x, π)

≤ negl(λ)

Pr 𝒱*(srs, π) = 1;
(srs, τ) ← 𝒦
x ← 𝒱*(srs)

π ← 𝒫(srs, (x, w))
≈ Pr 𝒱*(srs, πsim) = 1;

(srs, τ) ← 𝒦
x ← 𝒱*(srs)

πsim ← 𝒮(srs, τ, x))

R = {(x, w) : something}

Everything that can be proven
(NP) can be proven in

Zero-Knowledge

Knowledge of discrete log

Knowledge of discrete log
Discrete logs are hard to compute

(In some groups)

Knowledge of discrete log

Let be a cyclic group of order (prime) and be a generator.

Famous secret-key, public-key couple:

𝔾 q g

R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

sk ← ℤq, pk = gsk

Discrete logs are hard to compute

(In some groups)

Knowledge of discrete log

Let be a cyclic group of order (prime) and be a generator.

Famous secret-key, public-key couple:

𝔾 q g

R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

sk ← ℤq, pk = gsk

Discrete logs are hard to compute

(In some groups)

Knowledge of discrete log

Let be a cyclic group of order (prime) and be a generator.

Famous secret-key, public-key couple:

𝔾 q g

R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

sk ← ℤq, pk = gsk

Discrete logs are hard to compute

(In some groups)

Famous secret-key, public-key couple:

sk ← ℤq, pk = gsk

Knowledge of discrete log - Schnorr

Knowledge of discrete log - Schnorr

𝒫 𝒱

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h))

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

u = gr
r ← ℤq

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

u = gr
r ← ℤq

u

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

u = gr
r ← ℤq

u

c ← ℤq

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

u = gr
r ← ℤq

u

c ← ℤq

c

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

u = gr
r ← ℤq

u

c ← ℤq

c

z = r + cx

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

u = gr
r ← ℤq

u

c ← ℤq

c

z = r + cx
z

Knowledge of discrete log - Schnorr

𝒫 𝒱
R = {(x, h) : x ∈ ℤq ∧ h ∈ 𝔾 ∧ h = gx}

((h, 𝔾), (x, h)) ((g, 𝔾), h)

u = gr
r ← ℤq

u

c ← ℤq

c

z = r + cx
z

gz = uhc

Completeness

Completeness

Theorem: The scheme satisfies completeness

Completeness

gz = uhc

Theorem: The scheme satisfies completeness

Completeness

gz = uhc

Theorem: The scheme satisfies completeness

Completeness

gz = uhc

gr+cx = uhc

Theorem: The scheme satisfies completeness

Completeness

gz = uhc

gr+cx = uhc

Theorem: The scheme satisfies completeness

Completeness

gz = uhc

gr+cx = uhc

gr+cx = grhc

Theorem: The scheme satisfies completeness

Completeness

gz = uhc

gr+cx = uhc

gr+cx = grhc

Theorem: The scheme satisfies completeness

Completeness

gz = uhc

gr+cx = uhc

gr+cx = grhc

gr+cx = gr(gx)c

Theorem: The scheme satisfies completeness

Knowledge-soundness

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

With probability , . Then,
ϵ2 gz1 = uhc1 ∧ gz2 = uhc2

Knowledge-soundness

Let be a malicious prover that convinces the verifier with probability . We
construct the extractor as follows:

- runs prover to obtain initial message

- Send to and obtains response

- Rewind to its state after

- Send and get response

- Output

𝒫* ϵ
ℰ

ℰ 𝒫* u
c1 ← ℤq 𝒫* z1

𝒫* u
c2 ← ℤq z2

x =
z1 − z2

c1 − c1
∈ ℤq

With probability , . Then,
ϵ2 gz1 = uhc1 ∧ gz2 = uhc2

gz1

hc1
=

gz2

hc2
→

gz1

gz2
=

hc1

hc2
→ gz1−z2 = hc1−c2 → gz1−z2 = (gx)(c1−c2) → g

z1 − z2
c1 − c2 = (gx)

Honest-Verifier Zero-knowledge

Honest-Verifier Zero-knowledge

 We need to construct a simulator that outputs an accepting proof with
the same distribution than an honestly generated one (random)

-

-

-

- Output

𝒮(h)

z ← ℤq
c ← ℤq

u =
gz

hc
gz = uhc

(u, c, z)

Honest-Verifier Zero-knowledge

 We need to construct a simulator that outputs an accepting proof with
the same distribution than an honestly generated one (random)

-

-

-

- Output

𝒮(h)

z ← ℤq
c ← ℤq

u =
gz

hc
gz = uhc

(u, c, z)

Honest-Verifier Zero-knowledge

 We need to construct a simulator that outputs an accepting proof with
the same distribution than an honestly generated one (random)

-

-

-

- Output

𝒮(h)

z ← ℤq
c ← ℤq

u =
gz

hc
gz = uhc

(u, c, z)

Honest-Verifier Zero-knowledge

 We need to construct a simulator that outputs an accepting proof with
the same distribution than an honestly generated one (random)

-

-

-

- Output

𝒮(h)

z ← ℤq
c ← ℤq

u =
gz

hc
gz = uhc

(u, c, z)

Honest-Verifier Zero-knowledge

 We need to construct a simulator that outputs an accepting proof with
the same distribution than an honestly generated one (random)

-

-

-

- Output

𝒮(h)

z ← ℤq
c ← ℤq

u =
gz

hc
gz = uhc

(u, c, z)

Lookup Tables

Pedrinho Valeria

⃗T = (v1, v2, v3, …, vm)

Pedrinho Valeria

⃗T = (v1, v2, v3, …, vm)

Pedrinho Valeria

 is a commitment to elements 𝖢 si ∈ ⃗T

Importance

- Building blocks to many systems

- Efficiency: mostly do not depend of the size of the table

- Flexibility: zero-knowledge/succinctness/pre-computable

Some examples

⃗T = (18,19,…,120)

Some examples

⃗T = (18,19,…,120) is your age𝖢

Some examples

⃗T = (18,19,…,120) is your age𝖢

Some examples

⃗T =

x1 f(x1)
x2 f(x2)
⋮ ⋮
xm f(xm)

⃗T = (18,19,…,120) is your age𝖢

Some examples

⃗T =

x1 f(x1)
x2 f(x2)
⋮ ⋮
xm f(xm)

 is 𝖢 (xi, yi)

⃗T = (18,19,…,120) is your age𝖢

Some examples

⃗T =

x1 f(x1)
x2 f(x2)
⋮ ⋮
xm f(xm)

 is 𝖢 (xi, yi)

⃗T = (user1, …, userm)

⃗T = (18,19,…,120) is your age𝖢

Some examples

⃗T =

x1 f(x1)
x2 f(x2)
⋮ ⋮
xm f(xm)

 is 𝖢 (xi, yi)

⃗T = (user1, …, userm) is my user name𝖢

⃗T = (18,19,…,120) is your age𝖢

Some examples

⃗T =

x1 f(x1)
x2 f(x2)
⋮ ⋮
xm f(xm)

 is 𝖢 (xi, yi)

⃗T = (user1, …, userm) is my user name𝖢

Membership proofs from Lookup tables

⃗T = (user1, …, userm) is my user name𝖢

Membership proofs from Lookup tables

⃗T = (user1, …, userm) is my user name𝖢

I am an authorized member/
my name is on the list

Membership proofs from Lookup tables
⃗T = (user1, …, userm) is my user name𝖢

Membership proofs from Lookup tables
⃗T = (user1, …, userm) is my user name𝖢

sk ← ℤq

Membership proofs from Lookup tables
⃗T = (user1, …, userm) is my user name𝖢

sk ← ℤq

pk = gsk

Membership proofs from Lookup tables
 is my user name𝖢

sk ← ℤq

pk = gsk
⃗T = (pk1, …, pkm)

Membership proofs from Lookup tables
 is my user name𝖢

sk ← ℤq

pk = gsk

𝖢 = Com(pk) = gx+r.sk

⃗T = (pk1, …, pkm)

Membership proofs from Lookup tables
 is my user name𝖢

sk ← ℤq

pk = gsk

𝖢 = Com(pk) = gx+r.sk

⃗T = (pk1, …, pkm)

“I am authorized”:
1. Use a lookup table to prove in zero-knowledge is a commitment to

something in
2. Use Schorr to prove knowledge of the corresponding
3. It is me!

𝖢
⃗T

sk

Membership proofs from Lookup tables
 is my user name𝖢

sk ← ℤq

pk = gsk

𝖢 = Com(pk) = gx+r.sk

⃗T = (pk1, …, pkm)

“I am authorized”:
1. Use a lookup table to prove in zero-knowledge is a commitment to

something in
2. Use Schorr to prove knowledge of the corresponding
3. It is me!

𝖢
⃗T

sk

Membership proofs from Lookup tables
 is my user name𝖢

sk ← ℤq

pk = gsk

𝖢 = Com(pk) = gx+r.sk

⃗T = (pk1, …, pkm)

“I am authorized”:
1. Use a lookup table to prove in zero-knowledge is a commitment to

something in
2. Use Schnorr to prove knowledge of the corresponding
3. It is me!

𝖢
⃗T

sk

Membership proofs from Lookup tables
 is my user name𝖢

sk ← ℤq

pk = gsk

𝖢 = Com(pk) = gx+r.sk

⃗T = (pk1, …, pkm)

“I am authorized”:
1. Use a lookup table to prove in zero-knowledge is a commitment to

something in
2. Use Schnorr to prove knowledge of the corresponding
3. It is me!

𝖢
⃗T

sk

¡¡¡Gracias!!!

Obrigado!!

arantxa@ethereum.org

www.criptolatino.org
@criptolatinoOrg

mailto:arantxa@ethereum.org
http://www.criptolatino.org

