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What is a SNARK?

● If computing F takes T prover should be ~O(T)
● 𝛱 should be short
● Verifier should run in o(T) 

Properties of SNARKs

Prover Verifier

Let F be a 2-input function, and x a public input 

∃ w such F(x,w)=y

𝛱



Requirements for practical SNARKs

● linear or quasilinear prover
● logarithmic proof size  (or smaller)
● logarithmic verifier (or smaller)

In many cases:

● verification happens on-chain so every operation matters



Requirements for practical SNARKs

● linear or quasilinear prover
● logarithmic proof size  (or smaller)
● logarithmic verifier (or smaller)

In many cases:

● verification happens on-chain so every operation matters
○ Groth16 (an improved version of GGPR13) still remains 

■ the cheapest proof system to verify with constant number of operations
■ smallest proof size: constant 

● < 200 bytes 
● exact size depends on the curve



But we’re not fully happy with Groth16…

● function-specific trusted setup  
○ any updates to the circuit require a new ceremony which we want to avoid at all costs 

● trusted setup is linear in the size of the circuit
○ for large circuits ⇒ requires GBs of storage
○ limits the maximum size of a circuit

● Groth16 uses FFTs on the prover’s side
○ hard to parallelise 
○ put strain on the prover for large circuits due to memory requirements



On the other hand

● Transparent SNARKs
○ Have no trusted setup (Spartan, Starks) 

●  Universal setup SNARKs
○ Have a trusted setup that depends only on the size of the circuit 
○ Plonk, Hyperplonk, etc. 

● However those have longer proofs and verification time than  Groth16
○ But usually a faster prover



Let’s build a SNARK with the same proof size
and verification cost as Groth16, but also a 
universal and small trusted setup!



General idea of Testudo

● Prover wants to prove that F(x,w)=y
○ Run a fast transparent SNARK P that the prover knows w 

■ to get a long proof 𝛱
○ Then run a Groth16 proof that the prover knows a correct 𝛱

■ That satisfies the verification algorithm V(𝛱)=1
■ This yields a shorter (constant) proof 𝛱’

● Trusted setup is short and universal 
○ The computation over which we run Groth16 is the verification algorithm of the transparent 

SNARK 
■ Which is logarithmic in the size of F
■ And works for any F

● Ideas inspired by other 2-level recursion works [Belling et al. ‘22]
○ Independently ZKBridge developed a similar approach
○ Specific computations, we are the first to use it for generic computations



Technical contributions 

● We started with Spartan as the underlying transparent SNARK
○ But that has O(√N) proofs and we wanted shorter proofs to feed into Groth16

● Changed Spartan to use a new polynomial commitment for the witness
○ Started with the PST’13 polynomial commitment for multivariate polynomials

■ Log-size proofs
■ But that requires a O(N) trusted setup (where N is the size of the R1CS)

● Too long for us
● Modified PST’13 to achieve O(√N)  trusted setup

○ Using ideas from the MIPP protocol [B+21]
● Implemented this over a cycle of curve to achieve greater efficiency



Refresher: rank-1 constraint system (R1CS)

● R1CS generalises the circuit satisfiability problem
● Consider finite field     , matrices              and vector

○               model the actual circuit and are public
○      is the private witness

● An R1CS instance is satisfiable, iff the following relation holds



Why R1CS

● Introduced as Quadratic Span Programs in GGPR13
○ A form of arithmetization of generic computations
○ Groth16 and Spartan uses R1CS to generate proofs

● There are alternative ways to encode a computation
○ E.g. higher order constraints a la Plonk

● Motivation came from improving the SNARK used by the Filecoin protocol
○ Filecoin relies on storage providers proving that they are committing a certain amount of 

memory to the network
○ Uses a large Proof of Space too long to post on chain
○ The Groth16 SNARK is used to compress it to constant size

■ Run over an R1CS of size about 2^30 
● Building a new R1CS based SNARK would give us a “drop-in” replacement for 

Groth16 in Filecoin
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● Recall                                            tells whether R1CS instance is satisfiable



Spartan

● Assume we have a circuit   
● Recall                                            tells whether R1CS instance is satisfiable
● Represent matrices as functions

                                                      and 



Spartan

● Assume we have a circuit   
● Recall                                            tells whether R1CS instance is satisfiable
● Represent matrices as functions

                                                      and 
● Using MLE extensions over the boolean hypercube

 



Spartan

● Assume we have a circuit   
● Recall                                            tells whether R1CS instance is satisfiable
● Represent matrices as functions

                                                      and 
● Using MLE extensions

● Then, we can define the following sumcheck instance 

1 if              otherwise 0



Spartan 

● V ask for evaluation at 
● P

○ commits to witness          with polynomial commitment scheme
■ proof size and verification between and           and 

● depends on whether we allow a trusted setup
○ uses computation commitments  for

■ generating this is part of the public setup 
■ commitment exploits the sparsity of the R1CS matrices 

● ensures prover time remains quasilinear (at most                   ) 
○ responds with evaluations and proof of opening for the 4 polynomials 



PST13 



PST13 

logarithmic proof size



PST13 

logarithmic verification cost



PST 

back to a O(N) circuit-size dependent trusted setup



PST 

log|C| polynomial divisions, the  largest one dominates the cost



 sqrt-PST

Trusted setup is O(√N) because
● polynomials now have √N terms (PST trusted setup)
● MIPP commits to √N group elements (MIPP trusted setup)
● B+’21 shows how to do this for univariate KZG commitments

○ We generalize it to multivariate PST commitments



Let’s build a SNARK with the same proof size
and verification cost as Groth16, but also a 
universal and small trusted setup!



Testudo: PST + Spartan + Groth16

sqrt-PST Spartan prover

Easy since sumcheck is over field elements

Hard since these are computations over group elements



2-chain of Pairing Equipped curve

       



Testudo: PST + Spartan + Groth16

circuit on 
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sqrt-PST Spartan prover
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circuit on 

circuit on 

sqrt-PST Spartan prover

PST trusted setup + setup for fixed circuit ⇒ universal trusted setup



Testudo: PST + Spartan + Groth16

circuit on 

circuit on 

sqrt-PST Spartan prover

Circuit for Groth16 proof < 10 mil constraints => Groth16 proof generation adds only few seconds to 
proving time 



Testudo: PST + Spartan + Groth16

circuit on 

circuit on 

sqrt-PST Spartan prover

Verifier is just one Groth16 proof verification on  



         Computation Commitment

● A lot of prover time is spent on the computational commitment



         Computational Commitment

● A lot of prover time is spent on the computational commitment
● This can be reduced by exploiting data-parallel computation



         Computational Commitment

● A lot of prover time is spent on the computational commitment
● This can be reduced by exploiting data-parallel computation



         Computational Commitment

● A lot of prover time is spent on the computational commitment
● This can be reduced by exploiting data-parallel computation

batch sumcheck



Further Steps

● Explore other ways to improve the computation commitment 
○ would trusted setups help here?

● Use Dory instead of PST
○ Slower prover but much much smaller trusted setup 

● Finish implementation
● Full comparison with Plonk/Hyperplonk

○ Hard to do meaningfully because of different arithmetizations
● Testudo on BLS12-381

○ more popular curve in the space, Filecoin uses this
○  lacks a “sister” curve that allows the same Groth16 compression

■ existing options do not support FFT
○ option 1: could leave the polynomial openings in the clear for proof
○ option 2: leverage another proof system for the outer circuit



Questions?


