
Krĳn Reĳnders
LATINCRYPT 2023

Effective Pairings
in Isogeny-based Cryptography

Pairings map
elliptic curve problems
to finite field problems

Elliptic curve arithmetic
is slow

Finite field arithmetic

is (very) fast

Hence, fast pairings
means fast solutions

Effective Pairings in Isogeny-based Cryptography

Isogenies
& Pairings

1

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋)

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

What are pairings and
what are isogenies?

Isogenies
& Pairings

1 elliptic curves in CSIDH

P

Q

P + Q

E : y2 = x3 + Ax2 + x, A ∈ 𝔽p

supersingular elliptic curve

• has points in

• choose so that

• this implies the rational points on have

orders that divide

p + 1 E(𝔽p)

p p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

E

p + 1

P = P3 + P5 + P7 ∈ E(𝔽p)

φ

[5 ⋅ 7]P = P′ 3 + 𝒪 + 𝒪 ∈ E(𝔽p)

φ1(P) = 𝒪 + P′ 5 + P′ 7 ∈ E′ (𝔽p)

Isogenies
& Pairings

1 elliptic curves in CSIDH

P

Q

P + Q

E : y2 = x3 + Ax2 + x, A ∈ 𝔽p

supersingular elliptic curve

• has points in

• choose so that

• this implies the rational points on have

orders that divide

p + 1 E(𝔽p)

p p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

E

p + 1

Take

points on such curves

We have that

E(𝔽p) ≅ ℤ4 × ℤℓ1
× ℤℓ2

× … × ℤℓn
,

So think of a point as a sum of points of order P ∈ E(𝔽p) Pi ℓi

P = P0 + P1 + P2 + … + Pn

which shows how scalars with affect the torsion[λ] λ ∈ ℕ

[ℓ2]P = [ℓ2]P0 + [ℓ2]P1 + [ℓ2]P2 + … + [ℓ2]Pn

= [ℓ2]P0 + [ℓ2]P1 + 𝒪 + … + [ℓ2]Pn

P = P3 + P5 + P7 ∈ E(𝔽p)

φ

[5 ⋅ 7]P = P′ 3 + 𝒪 + 𝒪 ∈ E(𝔽p)

φ1(P) = 𝒪 + P′ 5 + P′ 7 ∈ E′ (𝔽p)

Isogenies
& Pairings

1 elliptic curves in CSIDH

P

Q

P + Q

E : y2 = x3 + Ax2 + x, A ∈ 𝔽p

supersingular elliptic curve

• has points in

• choose so that

• this implies the rational points on have

orders that divide

p + 1 E(𝔽p)

p p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

E

p + 1

Take

points on such curves

We have that

E(𝔽p) ≅ ℤ4 × ℤℓ1
× ℤℓ2

× … × ℤℓn
,

So think of a point as a sum of points of order P ∈ E(𝔽p) Pi ℓi

P = P0 + P1 + P2 + … + Pn

which shows how scalars with affect the torsion[λ] λ ∈ ℕ

[ℓ2]P = [ℓ2]P0 + [ℓ2]P1 + [ℓ2]P2 + … + [ℓ2]Pn

= [ℓ2]P0 + [ℓ2]P1 + 𝒪 + … + [ℓ2]Pn

the order of is readable
from the non-zero ’s

P
Pi

the torsion that is missing
are precisely the zero ’s

P
Pi

full-torsion points

we call a point a full-torsion point
if the order is , equivalently, all are non-zero

P ∈ E(𝔽p)
p + 1 Pi

P = P3 + P5 + P7 ∈ E(𝔽p)

φ

[5 ⋅ 7]P = P′ 3 + 𝒪 + 𝒪 ∈ E(𝔽p)

φ1(P) = 𝒪 + P′ 5 + P′ 7 ∈ E′ (𝔽p)

Isogenies
& Pairings

1 elliptic curves in CSIDH

P

Q

P + Q

E : y2 = x3 + Ax2 + x, A ∈ 𝔽p

supersingular elliptic curve

• has points in

• choose so that

• this implies the rational points on have

orders that divide

p + 1 E(𝔽p)

p p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

E

p + 1

the order of is readable
from the non-zero ’s

P
Pi

the torsion that is missing
are precisely the zero ’s

P
Pi

full-torsion points

we call a point a full-torsion point
if the order is , equivalently, all are non-zero

P ∈ E(𝔽p)
p + 1 Pi

Take

torsion points and isogenies

1. Any* isogeny of degree
- given by kernel of size
- generated by point of order

φ N
N

P N

P = P3 + P5 + P7 ∈ E(𝔽p)

φ

*cyclic, separable

2. Any* isogeny of degree
- splits into sub-isogenies of degree
- each generated by point of order

φ N = ∏ℓi

ℓi
P ℓi

deg 3 ⋅ 5 ⋅ 7

deg 3 deg 5 deg 7

3. Any* isogeny of degree
- computed using one full-torsion

- per , compute to get

φ N = ∏ℓi

P

ℓi [
p + 1

ℓi
]P ker(φi)

[5 ⋅ 7]P = P′ 3 + 𝒪 + 𝒪 ∈ E(𝔽p)

φ1(P) = 𝒪 + P′ 5 + P′ 7 ∈ E′ (𝔽p)

E(𝔽p) ≅ ℤ4 × ℤℓ1
× ℤℓ2

× … × ℤℓn
,

P = P0 + P1 + P2 + … + Pn

[ℓ2]P = [ℓ2]P0 + [ℓ2]P1 + [ℓ2]P2 + … + [ℓ2]Pn

= [ℓ2]P0 + [ℓ2]P1 + 𝒪 + … + [ℓ2]Pn

Isogenies
& Pairings

1 the Tate pairing*

bilinear pairing from torsion groups to fields

• choose a degree

• take point of order on , that is

• take point on such that

• then

r

P r E P ∈ E(𝔽p2)[r]

Q E Q ∈ E(𝔽p2)/rE(𝔽p2)

er(P, Q) = ζ ∈ μr

*reduced

P

Q

ζ ∈ 𝔽p2

Isogenies
& Pairings

1 the Tate pairing*

bilinear pairing from torsion groups to fields

• choose a degree

• take point of order on , that is

• take point on such that

• then

r

P r E P ∈ E(𝔽p2)[r]

Q E Q ∈ E(𝔽p2)/rE(𝔽p2)

er(P, Q) = ζ ∈ μr

*reduced

P

Q

ζ ∈ 𝔽p2

Take

in our specific case

Formally, this pairing is abstract. Specifically in our case,
there is a nice interpretation of this pairing.

Choose dividing , say then for we getr p + 1 r = ∏ℓi =
p + 1

4
P ∈ E(𝔽p)

P = 𝒪 +P1 + P2 + … + Pn .

p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

Isogenies
& Pairings

1 the Tate pairing*

bilinear pairing from torsion groups to fields

• choose a degree

• take point of order on , that is

• take point on such that

• then

r

P r E P ∈ E(𝔽p2)[r]

Q E Q ∈ E(𝔽p2)/rE(𝔽p2)

er(P, Q) = ζ ∈ μr

*reduced

P

Q

ζ ∈ 𝔽p2

Take

in our specific case

Formally, this pairing is abstract. Specifically in our case,
there is a nice interpretation of this pairing.

Choose dividing , say then for we getr p + 1 r = ∏ℓi =
p + 1

4
P ∈ E(𝔽p)

P = 𝒪 +P1 + P2 + … + Pn .

p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

For , we have equivalence by elements in . In this scenario,
we can think of such elements as , which implies whenever

Q ∈ E(𝔽p) R rE(𝔽p2)
R R0 + 𝒪 + … + 𝒪 Q ∼ Q′

Q = Q0 + Q1 + Q2 + … + Qn Q′ = Q′ 0 + Q1 + Q2 + … + Qn∼

In this specific scenario, we can think of as the elements Q 𝒪 + Q1 + … + Qn

Isogenies
& Pairings

1 the Tate pairing*

bilinear pairing from torsion groups to fields

• choose a degree

• take point of order on , that is

• take point on such that

• then

r

P r E P ∈ E(𝔽p2)[r]

Q E Q ∈ E(𝔽p2)/rE(𝔽p2)

er(P, Q) = ζ ∈ μr

*reduced

P

Q

ζ ∈ 𝔽p2

Take

in our specific case

Formally, this pairing is abstract. Specifically in our case,
there is a nice interpretation of this pairing.

Choose dividing , say then for we getr p + 1 r = ∏ℓi =
p + 1

4
P ∈ E(𝔽p)

P = 𝒪 +P1 + P2 + … + Pn .

p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

For , we have equivalence by elements in . In this scenario,
we can think of such elements as , which implies whenever

Q ∈ E(𝔽p) R rE(𝔽p2)
R R0 + 𝒪 + … + 𝒪 Q ∼ Q′

Q = Q0 + Q1 + Q2 + … + Qn Q′ = Q′ 0 + Q1 + Q2 + … + Qn∼

In this specific scenario, we can think of as the elements Q 𝒪 + Q1 + … + Qn

! problem

If we pick ,
then is a multiple of .

Then

P, Q ∈ E(𝔽p)
Q P

er(P, Q) = 1

Isogenies
& Pairings

1 the Tate pairing*

bilinear pairing from torsion groups to fields

• choose a degree

• take point of order on , that is

• take point on such that

• then

r

P r E P ∈ E(𝔽p2)[r]

Q E Q ∈ E(𝔽p2)/rE(𝔽p2)

er(P, Q) = ζ ∈ μr

*reduced

P

Q

ζ ∈ 𝔽p2

Take

in our specific case

Formally, this pairing is abstract. Specifically in our case,
there is a nice interpretation of this pairing.

Choose dividing , say then for we getr p + 1 r = ∏ℓi =
p + 1

4
P ∈ E(𝔽p)

P = 𝒪 +P1 + P2 + … + Pn .

p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

For , we have equivalence by elements in . In this scenario,
we can think of such elements as , which implies whenever

Q ∈ E(𝔽p) R rE(𝔽p2)
R R0 + 𝒪 + … + 𝒪 Q ∼ Q′

Q = Q0 + Q1 + Q2 + … + Qn Q′ = Q′ 0 + Q1 + Q2 + … + Qn∼

In this specific scenario, we can think of as the elements Q 𝒪 + Q1 + … + Qn

! problem

If we pick ,
then is a multiple of .

Then

P, Q ∈ E(𝔽p)
Q P

er(P, Q) = 1

solution

Work over .
In our specific case,

just use on the twist

E[r] ⊆ E(𝔽p2)

Q

✓

Isogenies
& Pairings

1 the twist of E

Twist over of supersingular curve

• a curve with points over

• isomorphic to a specific subset of

• used in CSIDH to “move backwards” in graph

• want and , both full order

𝔽p E

Et p + 1 𝔽p

E(𝔽p2)

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

P
Q

E Et

Isogenies
& Pairings

1 the twist of E

Twist over of supersingular curve

• a curve with points over

• isomorphic to a specific subset of

• used in CSIDH to “move backwards” in graph

• want and , both full order

𝔽p E

Et p + 1 𝔽p

E(𝔽p2)

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

P
Q

E Et

1
consider and asP Q

P = P0 + P1 + … + Pn

Q = Q0 + Q1 + … + Qn

2
let r = p + 1

Tate pairing captures
where both

er(P, Q)
Pi, Qi ≠ 𝒪

Isogenies
& Pairings

1 the twist of E

Twist over of supersingular curve

• a curve with points over

• isomorphic to a specific subset of

• used in CSIDH to “move backwards” in graph

• want and , both full order

𝔽p E

Et p + 1 𝔽p

E(𝔽p2)

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

P
Q

E Et

1
consider and asP Q

P = P0 + P1 + … + Pn

Q = Q0 + Q1 + … + Qn

2
let r = p + 1

Tate pairing captures
where both

er(P, Q)
Pi, Qi ≠ 𝒪

crucial lemma

Let , , and . Let .

Then is an -th root of unity, whose order is precisely
 of order of , order of

P ∈ E(𝔽p) Q ∈ Et(𝔽p) r = p + 1 ζ = er(P, Q) ∈ 𝔽p2

ζ r
gcd P Q

Isogenies
& Pairings

1 the twist of E

Twist over of supersingular curve

• a curve with points over

• isomorphic to a specific subset of

• used in CSIDH to “move backwards” in graph

• want and , both full order

𝔽p E

Et p + 1 𝔽p

E(𝔽p2)

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

P
Q

E Et

1
consider and asP Q

P = P0 + P1 + … + Pn

Q = Q0 + Q1 + … + Qn

2
let r = p + 1

Tate pairing captures
where both

er(P, Q)
Pi, Qi ≠ 𝒪

crucial lemma

Let , , and . Let .

Then is an -th root of unity, whose order is precisely
 of order of , order of

P ∈ E(𝔽p) Q ∈ Et(𝔽p) r = p + 1 ζ = er(P, Q) ∈ 𝔽p2

ζ r
gcd P Q

example

If and both full torsion,
then has order

P Q
ζ r = p + 1

example

If has order 5, and has
order 15, then has order 5

P Q
ζ

Isogenies
& Pairings

1 the twist of E

Twist over of supersingular curve

• a curve with points over

• isomorphic to a specific subset of

• used in CSIDH to “move backwards” in graph

• want and , both full order

𝔽p E

Et p + 1 𝔽p

E(𝔽p2)

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

P
Q

E Et

1
consider and asP Q

P = P0 + P1 + … + Pn

Q = Q0 + Q1 + … + Qn

2
let r = p + 1

Tate pairing captures
where both

er(P, Q)
Pi, Qi ≠ 𝒪

crucial lemma

Let , , and . Let .

Then is an -th root of unity, whose order is precisely
 of order of , order of

P ∈ E(𝔽p) Q ∈ Et(𝔽p) r = p + 1 ζ = er(P, Q) ∈ 𝔽p2

ζ r
gcd P Q

example

If and both full torsion,
then has order

P Q
ζ r = p + 1

example

If has order 5, and has
order 15, then has order 5

P Q
ζ

!
notice

Curve arithmetic is slow!
Field arithmetic is fast!!

(more than factor 6)

Isogenies
& Pairings

1 the twist of E

Twist over of supersingular curve

• a curve with points over

• isomorphic to a specific subset of

• used in CSIDH to “move backwards” in graph

• want and , both full order

𝔽p E

Et p + 1 𝔽p

E(𝔽p2)

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

P
Q

E Et

1
consider and asP Q

P = P0 + P1 + … + Pn

Q = Q0 + Q1 + … + Qn

2
let r = p + 1

Tate pairing captures
where both

er(P, Q)
Pi, Qi ≠ 𝒪

crucial lemma

Let , , and . Let .

Then is an -th root of unity, whose order is precisely
 of order of , order of

P ∈ E(𝔽p) Q ∈ Et(𝔽p) r = p + 1 ζ = er(P, Q) ∈ 𝔽p2

ζ r
gcd P Q

example

If and both full torsion,
then has order

P Q
ζ r = p + 1

example

If has order 5, and has
order 15, then has order 5

P Q
ζ

!
notice

Curve arithmetic is slow!
Field arithmetic is fast!!

(more than factor 6)

Pick random and
Instead of using curve arithmetic
to compute their orders, use
to compute the overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

ζ

✓
 core idea

Pairings are quite slow

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea pairing crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do pairings with

E
p

Computing
is quite fast!

e(P, Q)

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea pairing crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do pairings with

E
p

Computing
is quite fast!

e(P, Q)

isogeny crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do isogenies with

E
p

Computing
seems way too slow!

e(P, Q)

These are mediocre curves,
and definitely bad primes,

to do pairings with

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea pairing crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do pairings with

E
p

Computing
is quite fast!

e(P, Q)

isogeny crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do isogenies with

E
p

Computing
seems way too slow!

e(P, Q)

These are mediocre curves,
and definitely bad primes,

to do pairings with

💔

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

Take

1

make pairings
great again

2

apply core idea

3
faster isogeny

algorithms!

MAIN RESULTS

pairing crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do pairings with

E
p

Computing
is quite fast!

e(P, Q)

isogeny crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do isogenies with

E
p

Computing
seems way too slow!

e(P, Q)

These are mediocre curves,
and definitely bad primes,

to do pairings with

💔

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

Take

1

make pairings
great again

2

apply core idea

3
faster isogeny

algorithms!

MAIN RESULTS

pairing crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do pairings with

E
p

Computing
is quite fast!

e(P, Q)

isogeny crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do isogenies with

E
p

Computing
seems way too slow!

e(P, Q)

These are mediocre curves,
and definitely bad primes,

to do pairings with

💔

first
this

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

Take

1

make pairings
great again

2

apply core idea

3
faster isogeny

algorithms!

MAIN RESULTS

pairing crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do pairings with

E
p

Computing
is quite fast!

e(P, Q)

isogeny crypto

Choose a “nice” curve ,
Choose a “nice” prime ,

to do isogenies with

E
p

Computing
seems way too slow!

e(P, Q)

These are mediocre curves,
and definitely bad primes,

to do pairings with

💔

first
this

then
this

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

STEP 0

BACK TO

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

STEP 0

BACK TO

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

STEP 0

BACK TO

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

STEP 0

BACK TO

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

STEP 0

BACK TO

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

STEP 0

BACK TO

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋) For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

1

implement all tricks
that apply

2

benchmark speed
and finetune

3

fast pairings

0

take some literature

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋)

10.000

20.000

30.000

40.000

Original Opt. step NAFs Window

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

3

fast pairings

Matrix Code
Equivalence

1

Speeding-up
general pairings

2

𝖣𝖻𝗅(T, f, Q)

𝖠𝖽𝖽(T, f, P, Q)

𝖭𝖾𝗑𝗍𝖡𝗂𝗍(𝗋)

10.000

20.000

30.000

40.000

Original Opt. step NAFs Window Extra

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

!
general notice

Computing pairings fast is quite technical.
Better suited for papers than slides

general approach

Instead I describe the general approach,
and leave all details out

✓

Take

extra pairings

if you have already computed
,

it is very efficient to compute

e(P, Q1)

e(P, Q2)

3

fast pairings

Fast pairings

Isogeny crypto

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%
✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P compute full torsion P

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%

In some CSIDH variants, we get E

Q: find and of
order , e.g. full torsion points

P ∈ E(𝔽p) Q ∈ Et(𝔽p)
p + 1

✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P compute full torsion P

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%

In some CSIDH variants, we get E

Q: find and of
order , e.g. full torsion points

P ∈ E(𝔽p) Q ∈ Et(𝔽p)
p + 1

A: take random, , then find
 . Compute order
and apply Gauss’ algorithm.

P, Q
ζ = e(P, Q) ζ

✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P compute full torsion P

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%

In some CSIDH variants, we get E

Q: find and of
order , e.g. full torsion points

P ∈ E(𝔽p) Q ∈ Et(𝔽p)
p + 1

A: take random, , then find
 . Compute order
and apply Gauss’ algorithm.

P, Q
ζ = e(P, Q) ζ

speedup: case dependent, up to -75%
✓ ✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P compute full torsion P verify supersingularity

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%

In some CSIDH variants, we get E

Q: find and of
order , e.g. full torsion points

P ∈ E(𝔽p) Q ∈ Et(𝔽p)
p + 1

A: take random, , then find
 . Compute order
and apply Gauss’ algorithm.

P, Q
ζ = e(P, Q) ζ

speedup: case dependent, up to -75%

In some CSIDH variants, we get E

Q: is even supersingular? verify
that it is!

E

✓ ✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P compute full torsion P verify supersingularity

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%

In some CSIDH variants, we get E

Q: find and of
order , e.g. full torsion points

P ∈ E(𝔽p) Q ∈ Et(𝔽p)
p + 1

A: take random, , then find
 . Compute order
and apply Gauss’ algorithm.

P, Q
ζ = e(P, Q) ζ

speedup: case dependent, up to -75%

In some CSIDH variants, we get E

Q: is even supersingular? verify
that it is!

E

A: take random, , then find
 . Verify order .

P, Q
ζ = e(P, Q) ζ ≥ 4 p

✓ ✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P compute full torsion P verify supersingularity

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%

In some CSIDH variants, we get E

Q: find and of
order , e.g. full torsion points

P ∈ E(𝔽p) Q ∈ Et(𝔽p)
p + 1

A: take random, , then find
 . Compute order
and apply Gauss’ algorithm.

P, Q
ζ = e(P, Q) ζ

speedup: case dependent, up to -75%

In some CSIDH variants, we get E

Q: is even supersingular? verify
that it is!

E

A: take random, , then find
 . Verify order .

P, Q
ζ = e(P, Q) ζ ≥ 4 p

speedup: -27% compared to CSIDH’s
✓ ✓ ✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

For and ,
don’t use curve arithmetic
but pairing to get

overlap in orders!

P ∈ E(𝔽p) Q ∈ Et(𝔽p)

e(P, Q)

✓
 core idea

verify full torsion P compute full torsion P verify supersingularity

Optimized pairing
computation for the specific
scenario P ∈ E(𝔽p), Q ∈ Et(𝔽p)

✓
fast pairings

&

Faster isogeny subroutines

In some CSIDH variants, we are
given and . P ∈ E(𝔽p) Q ∈ Et(𝔽p)

Q: verify that both and have
order , e.g. full torsion points

P Q
p + 1

A: compute and check
that order is .

ζ = e(P, Q)
ζ p + 1

speedup: -75%

In some CSIDH variants, we get E

Q: find and of
order , e.g. full torsion points

P ∈ E(𝔽p) Q ∈ Et(𝔽p)
p + 1

A: take random, , then find
 . Compute order
and apply Gauss’ algorithm.

P, Q
ζ = e(P, Q) ζ

speedup: case dependent, up to -75%

In some CSIDH variants, we get E

Q: is even supersingular? verify
that it is!

E

A: take random, , then find
 . Verify order .

P, Q
ζ = e(P, Q) ζ ≥ 4 p

speedup: -27% compared to CSIDH’sspeedup: +2% compared to Doliskani
✓ ✓ ✓?

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood ✓

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood

• quantum security well understood

✓

?

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood

• quantum security well understood

• quite slow constant-time

✓

?

?

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood

• quantum security well understood

• quite slow constant-time

• very slow deterministic, dummy-free

✓

✘

?

?

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood

• quantum security well understood

• quite slow constant-time

• very slow deterministic, dummy-free

✓

✘

?

?

?

how do we achieve fast high-security CSIDH?
constant-time, deterministic, dummy-free

✘

previously with pairings

✓

to do

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood

• quantum security well understood

• quite slow constant-time

• very slow deterministic, dummy-free

✓

✘

?

?

?

how do we achieve fast high-security CSIDH?
constant-time, deterministic, dummy-free

✘

previously with pairings

✓

to do

• add seed for torsion points in key

• slow verification of torsion points

• slow group action due to dummy-free

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood

• quantum security well understood

• quite slow constant-time

• very slow deterministic, dummy-free

✓

✘

?

?

?

how do we achieve fast high-security CSIDH?
constant-time, deterministic, dummy-free

✘

previously with pairings

✓

to do

• add seed for torsion points in key

• slow verification of torsion points

• slow group action due to dummy-free

• fast verification of torsion points

• removes probability from CTIDH

• improved group action and ss verify!

Matrix Code
Equivalence

13

Applying pairings
in isogeny crypto

why pairings at all?

scheme maturity CSIDH’s maturity?

• classical security well understood

• quantum security well understood

• fast, constant-time implementation

• deterministic and dummy-free

• classical security well understood

• quantum security well understood

• quite slow constant-time

• very slow deterministic, dummy-free

✓

✘

?

?

?

how do we achieve fast high-security CSIDH?
constant-time, deterministic, dummy-free

✘

previously with pairings

✓

to do

• add seed for torsion points in key

• slow verification of torsion points

• slow group action due to dummy-free

• fast verification of torsion points

• removes probability from CTIDH

• improved group action and ss verify!

• analyse optimal use of torsion

• can we use faster torsion finding?

• can improve group action!

Thank you!

Any questions*?

*If not, I have a question for you…

Matrix Code
Equivalence

1

Constant-time
Gauss’ algorithm?

⭐

Q: Given find generator for 𝔽q ζ 𝔽*q
Given curve over ,
find full torsion point

E 𝔽p

P

Finite field world Curve world

Matrix Code
Equivalence

1

Constant-time
Gauss’ algorithm?

⭐

Q: Given find generator for 𝔽q ζ 𝔽*q

Take

 GAUSS’ ALGORITHM

1. Take random , compute
2. If , stop,
3. else take random and compute

a. if , stop
b. else find coprime and with
c. set and and repeat from 2.

ζ ∈ 𝔽q t = 𝖮𝗋𝖽𝖾𝗋(ζ)
t = q − 1

β ∈ 𝔽*q s = 𝖮𝗋𝖽𝖾𝗋(β)
s = q − 1

d ∣ t e ∣ s d ⋅ e = 𝗅𝖼𝗆(t, s)
ζ ← ζt/d ⋅ βs/e t ← d ⋅ e

A:

Given curve over ,
find full torsion point

E 𝔽p

P

Take and ,
Compute their torsion.
If not full torsion,

take right multiple
set to fill
missing torsion in
repeat until full torsion

P Q

P
Q

P ← P + Q
P

Finite field world Curve world

Matrix Code
Equivalence

1

Constant-time
Gauss’ algorithm?

⭐

Q: Given find generator for 𝔽q ζ 𝔽*q

Take

 GAUSS’ ALGORITHM

1. Take random , compute
2. If , stop,
3. else take random and compute

a. if , stop
b. else find coprime and with
c. set and and repeat from 2.

ζ ∈ 𝔽q t = 𝖮𝗋𝖽𝖾𝗋(ζ)
t = q − 1

β ∈ 𝔽*q s = 𝖮𝗋𝖽𝖾𝗋(β)
s = q − 1

d ∣ t e ∣ s d ⋅ e = 𝗅𝖼𝗆(t, s)
ζ ← ζt/d ⋅ βs/e t ← d ⋅ e

A:

Q: Given find generator for in constant-time𝔽q ζ 𝔽*q

Given curve over ,
find full torsion point

E 𝔽p

P

Take and ,
Compute their torsion.
If not full torsion,

take right multiple
set to fill
missing torsion in
repeat until full torsion

P Q

P
Q

P ← P + Q
P

Given curve over ,
find full torsion point
in constant-time

E 𝔽p

P

Finite field world Curve world

