Effective Pairings in Isogeny-based Cryptography

Krijn Reijnders LATINCRYPT 2023

Pairings map elliptic curve problems to finite field problems

Elliptic curve arithmetic is slow

Finite field arithmetic is (very) fast

Hence, fast pairings means fast solutions

Effective Pairings in Isogeny-based Cryptography

What are pairings and what are isogenies?

- has p + 1 points in $E(\mathbb{F}_p)$
- orders that divide p + 1

elliptic curves in CSIDH

• choose *p* so that $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ • this implies the rational points on *E* have

- has p + 1 points in $E(\mathbb{F}_p)$

orders that divide p + 1

––––– points on such curves ––––––– ا ا
We have that
$E(\mathbb{F}_p) \cong \mathbb{Z}_4 \times \mathbb{Z}_{\ell_1} \times \mathbb{Z}_{\ell_2} \times \ldots \times \mathbb{Z}_{\ell_n},$
So think of a point $P \in E(\mathbb{F}_p)$ as a sum of points P_i of order \mathscr{C}_i
$P = P_0 + P_1 + P_2 + \ldots + P_n$
which shows how scalars [λ] with $\lambda \in \mathbb{N}$ affect the torsion
$[\mathscr{\ell}_2]P = [\mathscr{\ell}_2]P_0 + [\mathscr{\ell}_2]P_1 + [\mathscr{\ell}_2]P_2 + \dots + [\mathscr{\ell}_2]P_n$
$= [\mathscr{\ell}_2]P_0 + [\mathscr{\ell}_2]P_1 + \mathcal{O} + \ldots + [\mathscr{\ell}_2]P_n$

elliptic curves in CSIDH

• choose *p* so that $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ • this implies the rational points on *E* have

- has p + 1 points in $E(\mathbb{F}_p)$

orders that divide p + 1

––––– points on such curves ––––––– ا ا
We have that
$E(\mathbb{F}_p) \cong \mathbb{Z}_4 \times \mathbb{Z}_{\ell_1} \times \mathbb{Z}_{\ell_2} \times \ldots \times \mathbb{Z}_{\ell_n},$
So think of a point $P \in E(\mathbb{F}_p)$ as a sum of points P_i of order \mathscr{C}_i
$P = P_0 + P_1 + P_2 + \ldots + P_n$
which shows how scalars [λ] with $\lambda \in \mathbb{N}$ affect the torsion
$[\mathscr{\ell}_2]P = [\mathscr{\ell}_2]P_0 + [\mathscr{\ell}_2]P_1 + [\mathscr{\ell}_2]P_2 + \dots + [\mathscr{\ell}_2]P_n$
$= [\mathscr{\ell}_2]P_0 + [\mathscr{\ell}_2]P_1 + \mathcal{O} + \ldots + [\mathscr{\ell}_2]P_n$

elliptic curves in CSIDH

• choose *p* so that $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ • this implies the rational points on *E* have

the order of *P* is readable from the non-zero P_i 's

the torsion that *P* is *missing* are precisely the zero P_i 's

full-torsion points

we call a point $P \in E(\mathbb{F}_p)$ a **full-torsion point** if the order is p + 1, equivalently, all P_i are non-zero

- has p + 1 points in $E(\mathbb{F}_p)$
- orders that divide p + 1

the order of *P* is readable from the non-zero P_i 's

the torsion that *P* is *missing* are precisely the zero P_i 's

full-torsion points

we call a point $P \in E(\mathbb{F}_p)$ a **full-torsion point** if the order is p + 1, equivalently, all P_i are non-zero

elliptic curves in CSIDH

• choose *p* so that $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ • this implies the rational points on *E* have

- choose a degree r
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

- choose a degree r
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ there is a nice interpretation of this pairing.

Choose *r* dividing
$$p + 1$$
, say $r = \prod \ell_i = \frac{p+1}{4}$ then for $P \in E(\mathbb{F}_p)$ we get

$$P = \mathbf{O} + P_1 + P_2 + \dots + P_n.$$

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ there is a nice interpretation of this pairing.

Choose *r* dividing p + 1, say $r = \prod \ell_i = \frac{p+1}{4}$ then for $P \in E(\mathbb{F}_p)$ we get

$$P = \mathbf{0} + P_1 + P_2 + \dots + P_n.$$

For $Q \in E(\mathbb{F}_p)$, we have equivalence by elements R in $rE(\mathbb{F}_p^2)$. In this scenario, we can think of such elements R as $R_0 + \mathcal{O} + \ldots + \mathcal{O}$, which implies $Q \sim Q'$ whenever

 $Q = Q_0 + Q_1 + Q_2 + \dots + Q_n \sim Q' = Q'_0 + Q_1 + Q_2 + \dots + Q_n$

In this specific scenario, we can think of Q as the elements $\mathcal{O} + Q_1 + \ldots + Q_n$

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ there is a nice interpretation of this pairing.

Choose *r* dividing p + 1, say $r = \prod \ell_i = \frac{p+1}{4}$ then for $P \in E(\mathbb{F}_p)$ we get

$$P = \mathbf{0} + P_1 + P_2 + \dots + P_n.$$

For $Q \in E(\mathbb{F}_p)$, we have equivalence by elements R in $rE(\mathbb{F}_p^2)$. In this scenario, we can think of such elements R as $R_0 + \mathcal{O} + \ldots + \mathcal{O}$, which implies $Q \sim Q'$ whenever

 $Q = Q_0 + Q_1 + Q_2 + \dots + Q_n \sim Q' = Q'_0 + Q_1 + Q_2 + \dots + Q_n$

In this specific scenario, we can think of Q as the elements $\mathcal{O} + Q_1 + \ldots + Q_n$

- choose a degree *r*
- take point P of order r on E, that is $P \in E(\mathbb{F}_{p^2})[r]$
- take point Q on E such that $Q \in E(\mathbb{F}_{p^2})/rE(\mathbb{F}_{p^2})$
- then $e_r(P,Q) = \zeta \in \mu_r$

in our specific case

Formally, this pairing is abstract. Specifically in our case, $p + 1 = 4 \cdot \ell_1 \cdot \ell_2 \cdot \ldots \cdot \ell_n$ there is a nice interpretation of this pairing.

Choose *r* dividing p + 1, say $r = \prod \ell_i = \frac{p+1}{4}$ then for $P \in E(\mathbb{F}_p)$ we get

$$P = \mathbf{0} + P_1 + P_2 + \dots + P_n.$$

For $Q \in E(\mathbb{F}_p)$, we have equivalence by elements R in $rE(\mathbb{F}_p^2)$. In this scenario, we can think of such elements R as $R_0 + \mathcal{O} + \ldots + \mathcal{O}$, which implies $Q \sim Q'$ whenever

 $Q = Q_0 + Q_1 + Q_2 + \dots + Q_n \sim Q' = Q'_0 + Q_1 + Q_2 + \dots + Q_n$

In this specific scenario, we can think of Q as the elements $O + Q_1 + ... + Q_n$

Twist over \mathbb{F}_p **of supersingular curve** *E*

- a curve E^t with p + 1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

the twist of **E**

Twist over \mathbb{F}_p **of supersingular curve** *E*

- a curve E^t with p + 1 points over \mathbb{F}_p
- isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

let r = p + 1

Tate pairing $e_r(P, Q)$ captures where **both** $P_i, Q_i \neq \emptyset$

the twist of **E**

Twist over \mathbb{F}_p **of supersingular curve** *E*

- a curve E^t with p + 1 points over \mathbb{F}_p • isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$ • used in CSIDH to "move backwards" in graph

- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

let r = p + 1

Tate pairing $e_r(P, Q)$ captures where **both** $P_i, Q_i \neq \emptyset$

the twist of E

crucial lemma

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an *r*-th root of unity, whose order is precisely gcd of order of *P*, order of *Q*

the twist of E

Twist over \mathbb{F}_p **of supersingular curve** *E*

- a curve E^t with p + 1 points over \mathbb{F}_p • isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$ • used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

crucial lemma

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an *r*-th root of unity, whose order is precisely gcd of order of *P*, order of *Q*

the twist of **E**

Twist over \mathbb{F}_p **of supersingular curve** *E*

- a curve E^t with p + 1 points over \mathbb{F}_p • isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

crucial lemma

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an *r*-th root of unity, whose order is precisely gcd of order of *P*, order of *Q*

the twist of **E**

Twist over \mathbb{F}_p **of supersingular curve** *E*

- a curve E^t with p + 1 points over \mathbb{F}_p • isomorphic to a specific subset of $E(\mathbb{F}_{p^2})$
- used in CSIDH to "move backwards" in graph
- want $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, both full order

Let $P \in E(\mathbb{F}_p)$, $Q \in E^t(\mathbb{F}_p)$, and r = p + 1. Let $\zeta = e_r(P, Q) \in \mathbb{F}_{p^2}$.

Then ζ is an *r*-th root of unity, whose order is precisely gcd of order of *P*, order of *Q*

notice

Curve arithmetic is slow! Field arithmetic is fast!! (more than factor 6)

core idea

Pick random $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ Instead of using curve arithmetic to compute their orders, use ζ to compute the overlap in orders!

Pairings are quite slow

core idea

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **pairings** with

> Computing e(P, Q)is quite **fast**!

Speeding-up general pairings

core idea

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **pairings** with

Computing e(P, Q) is quite **fast**!

Speeding-up general pairings

isogeny crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

Computing *e*(*P*, *Q*) seems way too **slow**!

core idea

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **pairings** with

Computing e(P, Q) is quite **fast**!

Speeding-up general pairings

isogeny crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

> Computing e(P, Q)seems way too **slow**!

\checkmark

core idea

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do pairings with

> Computing e(P, Q)is quite **fast**!

isogeny crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

> Computing e(P, Q)seems way too **slow**!

core idea

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do pairings with

> Computing e(P, Q)is quite **fast**!

isogeny crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

> Computing e(P, Q)seems way too **slow**!

core idea

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do pairings with

> Computing e(P, Q)is quite **fast**!

isogeny crypto

Choose a "nice" curve *E*, Choose a "nice" prime *p*, to do **isogenies** with

These are mediocre curves, and definitely bad primes, to do **pairings** with

> Computing e(P, Q)seems way too **slow**!

core idea

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

\checkmark

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

general notice

Computing pairings fast is quite technical. Better suited for papers than slides

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Computing pairings fast is quite technical. Better suited for papers than slides

Speeding-up general pairings

core idea

For $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$, don't use curve arithmetic but pairing e(P, Q) to get overlap in orders!

general approach

Instead I describe the general approach, and leave all details out

extra pairings if you have already computed $e(P, Q_1)_{'}$ it is very efficient to compute $e(P, Q_2)$

Isogeny crypto

Fast pairings

computation for the specific

computation for the specific

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

Optimized pairing computation for the specific

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

computation for the specific

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

Optimized pairing computation for the specific

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

Faster isogeny subroutines

compute full torsion **P**

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p + 1, e.g. full torsion points

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

Faster isogeny subroutines

compute full torsion P

In some CSIDH variants, we get E

Q: find $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of order p + 1, e.g. full torsion points

A: take random, *P*, *Q*, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

comput
In some CSI
Q: find $P \in I$ order $p + 1$,

Faster isogeny subroutines

te full torsion P

DH variants, we get E

 $E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of e.g. full torsion points

A: take random, *P*, *Q*, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

verify full torsion **P**

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

comput
In some CSI
Q: find $P \in I$ order $p + 1$,

speedup: case dependent, up to -75%

Faster isogeny subroutines

te full torsion P

- DH variants, we get E
- $E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of e.g. full torsion points
- **A:** take random, *P*, *Q*, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

Optimized pairing computation for the specific

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

comput
In some CSI
Q: find $P \in I$ order $p + 1$,

Faster isogeny subroutines

te full torsion P

DH variants, we get E

 $E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of e.g. full torsion points

A: take random, *P*, *Q*, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

A: take random, *P*, *Q*, then find $\zeta = e(P, Q)$. Verify order $\zeta \ge 4\sqrt{p}$.

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

comput
In some CSI
Q: find $P \in I$ order $p + 1$,

Faster isogeny subroutines

te full torsion P

DH variants, we get E

 $E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of e.g. full torsion points

A: take random, *P*, *Q*, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

A: take random, *P*, *Q*, then find $\zeta = e(P, Q)$. Verify order $\zeta \ge 4\sqrt{p}$.

speedup: -27% compared to CSIDH's

Optimized pairing computation for the specific scenario $P \in E(\mathbb{F}_p), Q \in E^t(\mathbb{F}_p)$

verify full torsion P

In some CSIDH variants, we are given $P \in E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$.

Q: verify that both *P* and *Q* have order p + 1, e.g. full torsion points

A: compute $\zeta = e(P, Q)$ and check that order ζ is p + 1.

speedup: -75%

comput
In some CSI
Q: find $P \in I$ order $p + 1$,

Faster isogeny subroutines

te full torsion P

DH variants, we get E

 $E(\mathbb{F}_p)$ and $Q \in E^t(\mathbb{F}_p)$ of e.g. full torsion points

A: take random, *P*, *Q*, then find $\zeta = e(P,Q)$. Compute order ζ and apply Gauss' algorithm.

speedup: case dependent, up to -75%

verify supersingularity

In some CSIDH variants, we get E

Q: is *E* even supersingular? verify that it is!

A: take random, *P*, *Q*, then find $\zeta = e(P, Q)$. Verify order $\zeta \ge 4\sqrt{p}$.

speedup: +2% compared to Doliskani

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

why pairings at all?

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

why pairings at all?

CSIDH's maturity?

Radboud University

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

why pairings at all?

CSIDH's maturity?

classical security well understood

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

why pairings at all?

CSIDH's maturity?

- classical security well understood
- ? quantum security well understood

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation
- deterministic and dummy-free

why pairings at all?

CSIDH's maturity?

- - classical security well understood
- quantum security well understood ?)
- quite slow constant-time ?

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation •
- deterministic and dummy-free

why pairings at all?

CSIDH's maturity?

- classical security well understood
- quantum security well understood ?)
- quite slow constant-time ?
- × *very slow* deterministic, dummy-free

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation •
- deterministic and dummy-free

how do we achieve fast high-security CSIDH? constant-time, deterministic, dummy-free

previously

why pairings at all?

CSIDH's maturity?

- classical security well understood
- quantum security well understood ?
- quite slow constant-time ?)
- × *very slow* deterministic, dummy-free

scheme maturity

- classical security well understood
- quantum security well understood
- fast, constant-time implementation •
- deterministic and dummy-free •

how do we achieve fast high-security CSIDH? constant-time, deterministic, dummy-free

previously

add **seed** for torsion points in key •

- **slow** verification of torsion points •
- **slow** group action due to dummy-free •

why pairings at all?

CSIDH's maturity?

- classical security well understood
- quantum security well understood ?
- quite slow constant-time ?)
- × *very slow* deterministic, dummy-free

scheme maturity

- classical security well understood •
- quantum security well understood
- fast, constant-time implementation •
- deterministic and dummy-free •

how do we achieve fast high-security CSIDH? constant-time, deterministic, dummy-free

- add **seed** for torsion points in key •
- **slow** verification of torsion points
- **slow** group action due to dummy-free

- **fast** verification of torsion points
- removes probability from CTIDH
- improved group action and ss verify!

why pairings at all?

CSIDH's maturity?

- classical security well understood
 - quantum security well understood
- quite slow constant-time ?)
- × *very slow* deterministic, dummy-free

scheme maturity

- classical security well understood •
- quantum security well understood
- fast, constant-time implementation •
- deterministic and dummy-free •

how do we achieve fast high-security CSIDH? constant-time, deterministic, dummy-free

- add **seed** for torsion points in key
- **slow** verification of torsion points
- **slow** group action due to dummy-free

- **fast** verification of torsion points
- removes probability from CTIDH
- improved group action and ss verify!

why pairings at all?

CSIDH's maturity?

- classical security well understood
 - quantum security well understood
- quite slow constant-time ?)
- × *very slow* deterministic, dummy-free

- analyse **optimal** use of torsion
- can we use **faster** torsion finding?
- can improve group action!

Thank you! Any questions*?

*If not, I have a question for you...

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^*

Constant-time Gauss' algorithm?

Finite field world

Given curve E over $\mathbb{F}_{p'}$ find full torsion point P

Constant-time Gauss' algorithm?

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^*

A:

Finite field world

GAUSS' ALGORITHM

```
1. Take random \zeta \in \mathbb{F}_{q'} compute t = Order(\zeta)
```

```
3. else take random \beta \in \mathbb{F}_q^* and compute s = \text{Order}(\beta)
b. else find coprime d \mid t and e \mid s with d \cdot e = \text{lcm}(t, s)
```

```
c. set \zeta \leftarrow \zeta^{t/d} \cdot \beta^{s/e} and t \leftarrow d \cdot e and repeat from 2.
```

Curve world

Given curve *E* over $\mathbb{F}_{p'}$ find full torsion point *P*

Take P and Q, Compute their torsion. If *P* not full torsion, take right multiple Qset $P \leftarrow P + Q$ to fill missing torsion in P repeat until full torsion

Constant-time Gauss' algorithm?

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^*

A:

Q: Given \mathbb{F}_q find generator ζ for \mathbb{F}_q^* in constant-time

Finite field world

GAUSS' ALGORITHM

1. Take random $\zeta \in \mathbb{F}_{q'}$ compute $t = Order(\zeta)$

3. **else** take random $\beta \in \mathbb{F}_q^*$ and compute $s = \text{Order}(\beta)$

b. **else** find coprime $d \mid t$ and $e \mid s$ with $d \cdot e = \text{lcm}(t, s)$ c. set $\zeta \leftarrow \zeta^{t/d} \cdot \beta^{s/e}$ and $t \leftarrow d \cdot e$ and **repeat** from 2.

Curve world

Given curve *E* over $\mathbb{F}_{p'}$ find full torsion point *P*

Take P and Q, Compute their torsion. If *P* not full torsion, take right multiple Qset $P \leftarrow P + Q$ to fill missing torsion in P repeat until full torsion

Given curve *E* over $\mathbb{F}_{p'}$ find full torsion point *P* in constant-time

