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Effective Pairings
in Isogeny-based Cryptography



Pairings map  
elliptic curve problems  
to finite field problems



Elliptic curve arithmetic 
is slow 

 
Finite field arithmetic 

is (very) fast



Hence, fast pairings 
means fast solutions
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What are pairings and 
what are isogenies?



Isogenies  
& Pairings

1 elliptic curves in CSIDH

P

Q

P + Q

E : y2 = x3 + Ax2 + x, A ∈ 𝔽p

supersingular elliptic curve 

• has  points in  

• choose  so that  

• this implies the rational points on  have 

orders that divide 

p + 1 E(𝔽p)

p p + 1 = 4 ⋅ ℓ1 ⋅ ℓ2 ⋅ … ⋅ ℓn

E

p + 1

P = P3 + P5 + P7 ∈ E(𝔽p)

φ

[5 ⋅ 7]P = P′ 3 + 𝒪 + 𝒪 ∈ E(𝔽p)

φ1(P) = 𝒪 + P′ 5 + P′ 7 ∈ E′ (𝔽p)
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In some CSIDH variants, we get  E

Q: is  even supersingular? verify 
that it is!

E

A: take random, , then find 
 . Verify order .

P, Q
ζ = e(P, Q) ζ ≥ 4 p

speedup: -27% compared to CSIDH’sspeedup: +2% compared to Doliskani
✓ ✓ ✓?
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why pairings at all?

scheme maturity CSIDH’s maturity?

•    classical security well understood 

•    quantum security well understood 

•    fast, constant-time implementation 

•    deterministic and dummy-free

•    classical security well understood 

•    quantum security well understood 

•    quite slow constant-time 

•    very slow deterministic, dummy-free

✓

✘

?

?

?

how do we achieve fast high-security CSIDH? 
constant-time, deterministic, dummy-free

✘

previously with pairings

✓

to do

•    add seed for torsion points in key 

•    slow verification of torsion points 

•    slow group action due to dummy-free

•    fast verification of torsion points 

•    removes probability from CTIDH 

•    improved group action and ss verify!

•    analyse optimal use of torsion 

•    can we use faster torsion finding? 

•    can improve group action!



Thank you! 
 

Any questions*?

*If not, I have a question for you…
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Constant-time 
Gauss’ algorithm?

⭐

Q: Given  find generator  for 𝔽q ζ 𝔽*q

Take 

  GAUSS’ ALGORITHM     

1. Take random , compute  
2. If , stop,  
3. else take random  and compute  

a. if , stop 
b.  else find coprime  and  with  
c.  set  and  and repeat from 2.

ζ ∈ 𝔽q t = 𝖮𝗋𝖽𝖾𝗋( ζ )
t = q − 1

β ∈ 𝔽*q s = 𝖮𝗋𝖽𝖾𝗋( β )
s = q − 1

d ∣ t e ∣ s d ⋅ e = 𝗅𝖼𝗆(t, s)
ζ ← ζt/d ⋅ βs/e t ← d ⋅ e

A:

Given curve  over , 
find full torsion point 

E 𝔽p

P

Take  and , 
Compute their torsion. 
If  not full torsion, 

take right multiple  
set  to fill 
missing torsion in  
repeat until full torsion 

P Q

P
Q

P ← P + Q
P

Finite field world Curve world
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⭐

Q: Given  find generator  for 𝔽q ζ 𝔽*q

Take 

  GAUSS’ ALGORITHM     

1. Take random , compute  
2. If , stop,  
3. else take random  and compute  

a. if , stop 
b.  else find coprime  and  with  
c.  set  and  and repeat from 2.

ζ ∈ 𝔽q t = 𝖮𝗋𝖽𝖾𝗋( ζ )
t = q − 1

β ∈ 𝔽*q s = 𝖮𝗋𝖽𝖾𝗋( β )
s = q − 1

d ∣ t e ∣ s d ⋅ e = 𝗅𝖼𝗆(t, s)
ζ ← ζt/d ⋅ βs/e t ← d ⋅ e

A:

Q: Given  find generator  for  in constant-time𝔽q ζ 𝔽*q

Given curve  over , 
find full torsion point 

E 𝔽p

P

Take  and , 
Compute their torsion. 
If  not full torsion, 

take right multiple  
set  to fill 
missing torsion in  
repeat until full torsion 

P Q

P
Q

P ← P + Q
P

Given curve  over , 
find full torsion point  
in constant-time

E 𝔽p

P

Finite field world Curve world


