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1.	Post-quantum cryptography
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Nearly all currently deployed public-key cryptography is	based on	hardness of:
Ø integer	factorization (RSA)

Ø discrete	logarithm problem (ECC)

𝑛 = 𝑝 ⋅ 𝑞 𝑝, 𝑞 ?

𝑃, 𝑑𝑃 ∈ 𝐸(𝐅$) 𝑑 ?

1994: Peter	Shor describes an quantum algorithm solving both
problems X

𝑂(log%𝑛)
𝑂(log%𝑞)
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Will	(universal)	quantum computers	become real?	Mixed	opinions.

More	consensus:	risk that this happens in	the nearish future is	non-negligible.

motivates rapid transition to post-quantum cryptography:
Ø long	pipeline from proposal to deployment,
Ø long-term	secrets are	under threat now.		

2017: NIST	initiates “standardization effort”	for key encapsulation and signatures

cryptography that
§ runs	on	classical computers,
§ resists quantum computers

1.	Post-quantum cryptography
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Main contending hard	problems:

𝐸 𝐸′𝜑

𝑣

finding short	
vectors in	
lattices

finding isogenies
between elliptic

curves

0 1 0 0 1 1 0

0 1 0 0 0 1 1

decoding for random	
linear codes

solving non-linear
systems	of	
equations

h
𝑓! 𝑠!, … , 𝑠" = 0

⋮
𝑓& 𝑠!, … , 𝑠" = 0

finding preimages
under hash
functions

���

#𝑠 ℎ

1.	Post-quantum cryptography
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2020:	Preliminary	NIST	standards:	
LMS (stateful signatures)

XMSS (stateful signatures)

���

#
���

#

2022:	First	main NIST	standards:	
Kyber (key encapsulation)

Dilithium (signatures)

Falcon (signatures)

SPHINCS+ (signatures)
���

#

Moved to extra	round of	scrutiny:	
BIKE (key encapsulation)

McEliece (key encapsulation)

HQC (key encapsulation)

SIKE (key encapsulation)

0 1 0 0 1 1 0

0 1 0 0 0 1 1

0 1 0 0 1 1 0

0 1 0 0 0 1 1

0 1 0 0 1 1 0

0 1 0 0 0 1 1

2023:	Renewed competition for signatures

broken few	weeks	after selection
[CD23],	[MMP+23],	[Rob23]

1.	Post-quantum cryptography



2.	The	isogeny-finding problem
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Definitio
nA	homomorphism between two elliptic curves	𝐸 and 𝐸′ over	a	field	𝑘 is	a	
morphism 𝜑: 𝐸 → 𝐸′ such that 𝜑 ∞ = ∞′.
An	isogeny is	a	non-constant	homomorphism.

𝐸

𝐸′𝜑

Facts:
Ø isogenies are	surjective group homomorphisms with finite kernel (on	}𝑘-

points),	facts: § if 𝜑 is	separable then # ker𝜑 = deg𝜑
§ every finite subgroup 𝐾 ⊂ 𝐸 is	the kernel of	a	separable isogeny

𝜑: 𝐸 → 𝐸′

and this is	unique up	to post-composing 𝜑 with an isomorphism

makes	sense	to
write 𝐸′ = ⁄𝐸 𝐾

(e.g.,	via	Vélu’s
formulae)



2.	The	isogeny-finding problem
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Definitio
nA	homomorphism between two elliptic curves	𝐸 and 𝐸′ over	a	field	𝑘 is	a	
morphism 𝜑: 𝐸 → 𝐸′ such that 𝜑 ∞ = ∞′.
An	isogeny is	a	non-constant	homomorphism.

𝐸

𝐸′𝜑

Facts:
Ø isogenies are	surjective group homomorphisms with finite kernel (on	}𝑘-

points),

Ø for each isogeny 𝜑: 𝐸 → 𝐸′ there is	a	unique dual isogeny �𝜑: 𝐸' → 𝐸 such that

𝜑 ∘ �𝜑 = deg𝜑, �𝜑 ∘ 𝜑 = deg𝜑being isogenous is	an equivalence relation



2.	The	isogeny-finding problem
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Theorem [Tat66]
Two	elliptic curves	𝐸,	𝐸′ over	𝐅$ are	isogenous over	𝐅$ if and only if

#𝐸(𝐅$) = #𝐸′(𝐅$).

The	isogeny-finding problem is	to find an efficient algorithm with

Ø input: two elliptic curves	𝐸,	𝐸′ over	𝐅$ satisfying	#𝐸(𝐅$) = #𝐸′(𝐅$)

Ø output: an 𝐅$-isogeny 𝜑: 𝐸 → 𝐸′

Best	known general algorithms: § exponential time	complexity,
§ quantum computers	do	not seem to help
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Remark:	in	general non-trivial how to represent an 𝐅$-isogeny 𝜑: 𝐸 → 𝐸′ !

Ø If	deg𝜑 is	smooth,	can write 𝜑 as	composition of	small-degree isogenies.

Ø If 𝐸 𝑁 ⊂ 𝐸(𝐅$) for smooth 𝑁 > 2 deg 𝜑,	return

§ deg𝜑,

§ 𝜑(𝑃),	𝜑(𝑄) for some basis	𝑃, 𝑄 ∈ 𝐸[𝑁].	

default	understanding of	
“outputting an isogeny”

most	importa
nt	by-

product	of	att
ack	[Rob22a]

2.	The	isogeny-finding problem
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Remark:	in	general non-trivial how to represent an 𝐅$-isogeny 𝜑: 𝐸 → 𝐸′…

Ø If	deg𝜑 is	smooth,	return	𝜑 as	composition of	small-degree isogenies.

Ø If 𝐸 𝑁 ⊂ 𝐸(𝐅$) for smooth 𝑁 > 2 deg 𝜑,	return

§ deg𝜑

§ 𝜑(𝑃),	𝜑(𝑄) for some basis	𝑃, 𝑄 ∈ 𝐸[𝑁].	

default	understanding of	
“returning an isogeny”

2.	The	isogeny-finding problem

most	importa
nt	by-

product	of	att
ack	[Rob22a]

(for the moment,	forget about
this)



3.	Supersingular isogeny Diffie-Hellman	(SIDH/SIKE)
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High-level	idea:

𝐸 𝐸( = 𝐸/𝐴

𝐸) = 𝐸/𝐵

𝜑(

𝐸() = ⁄𝐸( 𝜑((𝐵)

𝐸)( = ⁄𝐸) 𝜑)(𝐴)

⁄𝐸 (𝐴 + 𝐵)
≅

≅

Constructive problem:
how do	we	allow Bob	
to determine 𝜑((𝐵)
without	revealing
𝜑(?

…	and likewise
for Alice

𝜑)



3.	Supersingular isogeny Diffie-Hellman	(SIDH/SIKE)
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Solution	[JDF11]:	choose public	bases	𝑃(, 𝑄( ∈ 𝐸[𝑁(],		𝑃), 𝑄) ∈ 𝐸[𝑁)]

𝐸 𝐸( = 𝐸/𝐴

𝐸) = 𝐸/𝐵

𝐴 = ⟨𝑃( + 𝑎𝑄(⟩

𝜑)

𝜑(
Alice	reveals
𝜑((𝑃)),	𝜑((𝑄))

Bob	reveals
𝜑)(𝑃(),	𝜑)(𝑄()

allows Bob	to compute
𝜑( 𝐵 = ⟨𝜑( 𝑃) + 𝑏𝜑( 𝑄) ⟩

allows Alice	to compute 𝜑) 𝐴 = ⟨𝜑) 𝑃( + 𝑎𝜑) 𝑄( ⟩

𝐸)( ≅ 𝐸()

𝐵 = ⟨𝑃) + 𝑏𝑄)⟩



3.	Supersingular isogeny Diffie-Hellman	(SIDH/SIKE)
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Solution	[JDF11]:	choose public	bases	𝑃(, 𝑄( ∈ 𝐸[𝑁(],		𝑃), 𝑄) ∈ 𝐸[𝑁)]

𝐸 𝐸( = 𝐸/𝐴

𝐸) = 𝐸/𝐵

𝐴 = ⟨𝑃( + 𝑎𝑄(⟩

𝜑(

𝐵 = ⟨𝑃) + 𝑏𝑄)⟩
Technical	remarks:

Ø 𝑁( = deg𝜑(,	𝑁) = deg𝜑) must	be smooth

Ø why supersingular?

§ makes for hardest isogeny-finding problem,	

§ good control	over	torsion /	base	field

§ not crucial for attack

𝜑)



Very important	to note:	recovering Alice’s secret isogeny

3.	Supersingular isogeny Diffie-Hellman	(SIDH/SIKE)
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𝐸 𝐸( = 𝐸/𝐴
𝜑(

𝜑((𝑃)), 𝜑((𝑄))𝑃), 𝑄)

is	not a	pure	instance of	the isogeny-finding problem!

Ø Recurring issue	in	cryptographic design.

Ø Torsion point	information	was	already shown
to reveal 𝜑( if	𝑁) ≫ 𝑁( [Pet17],	[dQKL+20].

Ø Pure	isogeny-finding problem remains hard.

“torsion point	
information”

known smooth degree



Henceforth,	focus	on	following problem:

Ø input:
§ 𝐸, 𝐸'/𝐅$ connected by an 𝐅$-isogeny 𝜑 of	known degree 𝑑,

§ a	basis	𝑃, 𝑄 ∈ 𝐸 𝑁 ⊂ 𝐸(𝐅$) for smooth and large	enough 𝑁,

§ 𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑 𝑄 ∈ 𝐸'[𝑁].

Ø output: a	representation of	𝜑.

4.	Recovering an isogeny from torsion point	
information

10/24

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

Lemma	[JU18]
A	degree-𝑑 isogeny 𝜑: 𝐸 → 𝐸′ is	uniquely determined by the images	of	4𝑑 + 1 points.

𝑁 > 2 𝑑 would be the
optimal assumption



Special	first	case:	𝑁 > 𝑑
𝑁 − 𝑑 = 𝑎* is	square

Consider:

One checks	�Φ ∘ Φ = Φ ∘ �Φ = 𝑁,	i.e., Φ is	an (𝑁,𝑁)-isogeny.

4.	Recovering an isogeny from torsion point	
information
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Φ : 𝐸×𝐸′ 𝐸×𝐸′

𝑎 �𝜑
−𝜑 𝑎

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄
𝐸′ 𝐸

We	follow	approach	of	[Rob23].	Inspiration:	[Kan97].
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Φ : 𝐸×𝐸′ 𝐸×𝐸′

𝑎 �𝜑
−𝜑 𝑎

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄
𝐸′ 𝐸

We	follow	approach	of	[Rob23].	Inspiration:	[Kan97].

Proof:

+Φ ∘ Φ = 𝑎 − 1𝜑
𝜑 𝑎

𝑎 1𝜑
−𝜑 𝑎 =

𝑎! + 1𝜑𝜑 0
0 𝑎! + 1𝜑𝜑

= 𝑎! + 𝑑 0
0 𝑎! + 𝑑



Special	first	case:	𝑁 > 𝑑
𝑁 − 𝑑 = 𝑎* is	square

Consider:

One checks	�Φ ∘ Φ = Φ ∘ �Φ = 𝑁,	i.e., Φ is	an (𝑁,𝑁)-isogeny.

Crucially: we	know kerΦ = 𝑎𝑃, 𝑃' , 𝑎𝑄, 𝑄' .

4.	Recovering an isogeny from torsion point	
information
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Φ : 𝐸×𝐸′ 𝐸×𝐸′

𝑎 �𝜑
−𝜑 𝑎

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

We	follow	approach	of	[Rob23].	Inspiration:	[Kan97].

𝐸′ 𝐸

(𝑎𝑃, 𝑃')
(𝑎𝑄, 𝑄')
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𝑎 �𝜑
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𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

We	follow	approach	of	[Rob23].	Inspiration:	[Kan97].

𝐸′ 𝐸

(𝑎𝑃, 𝑃')
(𝑎𝑄, 𝑄')

Proof sketch:

Φ 𝑎𝑃, 𝑃" = 𝑎 1𝜑
−𝜑 𝑎

#$
%($)

=
(𝑎! + 𝑑)𝑃

∞′
= (∞,∞′)

and likewise for (𝑎𝑄, 𝑄").
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Φ : 𝐸×𝐸′ 𝐸×𝐸′

𝑎 �𝜑
−𝜑 𝑎

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

We	follow	approach	of	[Rob23].	Inspiration:	[Kan97].

𝐸′ 𝐸

(𝑎𝑃, 𝑃')
(𝑎𝑄, 𝑄')

using two-dimensional
analogues of	Vélu,	we	
can compute 𝜑 𝑋 as	the
first	component	of	
− Φ X,∞ ,	for	any 𝑋 ∈ 𝐸
!

easy	to determine
ker𝜑 from this

Consequence:



Particularly	nice case:	𝑁 = 2"

Then Φ is	a	composition of	(2,2)-isogenies.	

4.	Recovering an isogeny from torsion point	
information
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𝐸′
𝐸

𝐻!

…
𝐻"#!

𝐸′
𝐸

Φ! Φ* Φ"#! Φ"

kerΦ! = 2"#! kerΦ = ⟨ 2"#!𝑎𝑃, 2"#!𝑃' , 2"#!𝑎𝑄, 2"#!𝑄' ⟩

kerΦ* = 2"#*Φ! kerΦ and so on	…

𝐸′ 𝐸

(𝑎𝑃, 𝑃')
(𝑎𝑄, 𝑄')
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𝐸′
𝐸

𝐻!

…
𝐻"#!

𝐸′
𝐸

Φ! Φ* Φ"#! Φ"

explicit	gluing formulae [HLP00]

Richelot isogenies (19th	century)

Also	explicit:	(3,3)-isogenies [BFT14];	otherwise resort	to [LR22].

𝐸′ 𝐸

(𝑎𝑃, 𝑃')
(𝑎𝑄, 𝑄')



4.	Recovering an isogeny from torsion point	
information
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Next	case:		𝑁 > 𝑑
𝑁 − 𝑑 = 𝑎!* + 𝑎** is	sum of	two squares

Approach:	same,	but	use

Nowmust	resort	to algorithms from [LR22].

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

Φ : 𝐸*×𝐸'* 𝐸*×𝐸'*

𝑎! 𝑎* �𝜑 0
−𝑎* 𝑎! 0 �𝜑
−𝜑 0 𝑎! −𝑎*
0 −𝜑 𝑎* 𝑎!



4.	Recovering an isogeny from torsion point	
information
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Next	case:		𝑁 > 𝑑
𝑁 − 𝑑 = 𝑎!* + 𝑎** + 𝑎%* + 𝑎>* is	sum of	four squares	(Lagrange)

Approach:	
work on	𝐸>×𝐸'> and	use

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

𝑎! −𝑎* −𝑎% −𝑎> �𝜑 0 0 0
𝑎* 𝑎! 𝑎> −𝑎% 0 �𝜑 0 0
𝑎% −𝑎> 𝑎! 𝑎* 0 0 �𝜑 0
𝑎> 𝑎% −𝑎* 𝑎! 0 0 0 �𝜑
−𝜑 0 0 0 𝑎! 𝑎* 𝑎% 𝑎>
0 −𝜑 0 0 −𝑎* 𝑎! −𝑎> 𝑎%
0 0 −𝜑 0 −𝑎% 𝑎> 𝑎! −𝑎*
0 0 0 −𝜑 −𝑎> −𝑎% 𝑎* 𝑎!



4.	Recovering an isogeny from torsion point	
information
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Full	case:		𝑁 > 𝑑
𝑁* − 𝑑 = 𝑎* or			𝑎!* + 𝑎** or			𝑎!* + 𝑎** + 𝑎%* + 𝑎>*

Approach:	proceed as	if we	know the images	of		!?𝑃,	
!
?𝑄 ∈ 𝐸[𝑁

*].

𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

𝐴=

𝐸@×𝐸'@

𝐴
Φ?

we	no	longer know kerΦ…



4.	Recovering an isogeny from torsion point	
information
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𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

𝐴=

𝐸@×𝐸'@

𝐴
Φ!

but	we	do	know 𝑁(kerΦ)!

𝑋
�Φ*

we	also know 𝑁(ker �Φ)

Full	case:		𝑁 > 𝑑
𝑁* − 𝑑 = 𝑎* or			𝑎!* + 𝑎** or			𝑎!* + 𝑎** + 𝑎%* + 𝑎>*

Approach:	proceed as	if we	know the images	of		!?𝑃,	
!
?𝑄 ∈ 𝐸[𝑁

*].



4.	Recovering an isogeny from torsion point	
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𝐸 𝐸′
𝜑

𝑃' = 𝜑 𝑃 ,𝑄' = 𝜑(𝑄)𝑃, 𝑄

𝐴=

𝐸@×𝐸'@

𝐴
Φ! 𝑋

�Φ*

so	we	recover Φ as	��Φ* ∘ Φ!

Full	case:		𝑁 > 𝑑
𝑁* − 𝑑 = 𝑎* or			𝑎!* + 𝑎** or			𝑎!* + 𝑎** + 𝑎%* + 𝑎>*

Approach:	proceed as	if we	know the images	of		!?𝑃,	
!
?𝑄 ∈ 𝐸[𝑁

*].
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Breaking	SIDH/SIKE	in	practice:	
Ø prefer to use 2,2 -isogenies or	(3,3)-isogenies (until [LR22] is	practical),

Ø good news:		𝑁( = 2" and		𝑁) = 3& and either 𝑁( > 𝑁) or	𝑁) > 𝑁(,

Ø bad	news:		 𝑁( −𝑁) = 𝑎* extremely unlikely,

Ø 𝑁( −𝑁) = 𝑎!* + 𝑎** more	likely,	but	can we	avoid dimension 4?

4.	Recovering an isogeny from torsion point	
information

Φ : 𝐸×𝐸′ 𝐸×𝐸′

𝑎 �𝜑
−𝜑 𝑎

?

?

Yes for special	starting curves	𝐸!



Breaking	SIDH/SIKE	in	practice:	
Ø prefer to use 2,2 -isogenies or	(3,3)-isogenies	(until	[LR22] is	practical),

Ø good news:		𝑁( = 2" and		𝑁) = 3& and either 𝑁( > 𝑁) or	𝑁) > 𝑁(,

Ø bad	news:		 𝑁( −𝑁) = 𝑎* extremely unlikely,

Ø 𝑁( −𝑁) = 𝑎!* + 𝑎** more	likely,

Ø breaks	all security	levels	of	SIKE	in	seconds on	a	laptop	[OP22],	[DK23]

Φ : 𝐸×𝐸′ 𝐸×𝐶

𝑎! + 𝐢𝑎* �𝜑
− 𝑎! + 𝐢𝑎* ∗𝜑 𝜑∗(𝑎! + 𝐢𝑎*)

16/24
4.	Recovering an isogeny from torsion point	
information

𝐸: 𝑦* = 𝑥% + 𝑥

𝐢 ∶ 𝐸 → 𝐸: 𝑥, 𝑦 ↦ (−𝑥, −1𝑦)



Reality check?
Ø SIDH/SIKE is	dead,	despite having withstood 11	years of	cryptanalysis

Ø Rainbow [Beu22] was	broken 17	years after its proposal

Ø Quantum	threat is	being taken	very seriously …	

Ø …	but	aren’t we	underestimating the risk	of	algorithmic breakthrough (even		
in	the case	of	integer	factorization and discrete	logarithm computation)?	

Ø Plea for:
§ not rushing things,
§ hybrid encryption for long-term	secrets,

§ adaptable cryptography (quick drop-in	replacements).

5.	Aftermath
17/24



Future of	isogeny-based cryptography?

Ø Finding isogenies remains hard:	schemes like	CSIDH,	SQISign,	…	
unaffected.

Ø Remains very active topic,	but	knocked back	to high-level	research	phase.

Ø There is	also good news [Rob22a]:	the attack	is	so efficient that one can
now efficiently represent isogeny 𝜑: 𝐸 → 𝐸′ by specifying

§ deg𝜑,

§ 𝜑 𝑃 ,	𝜑(𝑄) for basis	𝑃, 𝑄 ∈ 𝐸[𝑁] with 𝑁 > 2 𝑑.		

Ø Led	to multiple	constructive uses:	SQISignHD [DLR+23],	FESTA	[BMP23],
SCALLOP-HD	[CL23],	…

5.	Aftermath next	big	thing in	
isogeny-based crypto
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5.	Aftermath
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Ø Other applications [Rob22b]:
§ computing End(𝐸) for ordinary 𝐸/𝐅$ in	polytime,		given factorization of	
discriminant,

§ point	counting on	𝐸/𝐅B! in	time	𝑂(𝑛* ⋅ poly(log 𝑝)),
§ unconditional ¥𝑂(ℓ%)-algorithm for computing	ℓth	modular polynomial.

Lemma	[JU18]
A	degree-𝑑 isogeny 𝜑: 𝐸 → 𝐸′ is	uniquely determined by images	of	4𝑑 + 1 points.

Mathematical	updates:

Ø Recall:

At	Bristol/Banff	workshop	2023:	made	fully algorithmic.



6.	Analysis	of	a	countermeasure (M-SIDH)
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𝐸 𝐸( = 𝐸/𝐴

𝐸) = 𝐸/𝐵

𝐴 = ⟨𝑃( + 𝑎𝑄(⟩

𝜑)

𝜑(
Alice	reveals
𝜑((𝑃)),	𝜑((𝑄))

allows Bob	to compute
𝜑( 𝐵 = ⟨𝜑( 𝑃) + 𝑏𝜑( 𝑄) ⟩𝐵 = ⟨𝑃) + 𝑏𝑄)⟩

We	recall:

Bob	reveals
𝜑)(𝑃(),	𝜑)(𝑄()

allows Alice	to compute 𝜑) 𝐴 = ⟨𝜑) 𝑃( + 𝑎𝜑) 𝑄( ⟩

Observation
It	suffices to reveal 𝜆𝜑((𝑃)),	𝜆𝜑((𝑄)) for some secret 𝜆!



Leads	to following variant:

Ø input:
§ 𝐸, 𝐸'/𝐅$ connected by an 𝐅$-isogeny 𝜑 of	known degree 𝑑,
§ a	basis	𝑃, 𝑄 ∈ 𝐸 𝑁 ⊂ 𝐸(𝐅$) for smooth 𝑁 > 𝑑,	
§ 𝑃' = 𝜆𝜑 𝑃 , 𝑄' = 𝜆𝜑 𝑄 ∈ 𝐸' 𝑁 for some 𝜆 ∈ ⁄𝐙 𝑁𝐙 ∗

Ø output: a	representation of	𝜑.
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𝐸 𝐸′
𝜑

𝑃' = 𝜆𝜑 𝑃 , 𝑄' = 𝜆𝜑(𝑄)𝑃, 𝑄

Weil	pairing:	𝑒? 𝑃', 𝑄' = 𝑒? 𝜆𝜑 𝑃 , 𝜆𝜑 𝑄 = 𝑒? 𝑃, 𝑄 C"D reveals 𝜆*

Must	assume 𝑁 has	many distinct prime	factors in	order	to keep	𝜆 secret [FMP23].	

6.	Analysis	of	a	countermeasure (M-SIDH)



If	𝐸 or	𝐸′ carries small	non-scalar endomorphism 𝜎:	lollipop attack [FMP23]
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𝐸 𝐸′
𝜑 𝑃' = 𝜆𝜑 𝑃

𝑄' = 𝜆𝜑(𝑄)
𝑃
𝑄

6.	Analysis	of	a	countermeasure (M-SIDH)

�𝜑
𝜎

Observation:	write Σ ∈ ⁄𝐙 𝑁𝐙 *×* for	matrix	of	𝜎 with respect	to 𝑃, 𝑄 ∈ 𝐸[𝑁],	then

𝜑 ∘ 𝜎 ∘ �𝜑
𝑃′
𝑄′

= 𝑑 𝜑 ∘ 𝜎
𝜆 𝑃
𝜆 𝑄

= 𝑑 𝜑 Σ
𝜆 𝑃
𝜆 𝑄

= 𝑑 Σ
𝑃′
𝑄′

If	𝑁 > deg( �𝜑 ∘ 𝜎 ∘ 𝜑) = 𝑑 deg 𝜎,	results in	a	representation of	 �𝜑 ∘ 𝜎 ∘ 𝜑.

if cyclic:	recover 𝜑 from
this



If	𝐸 is	defined over	𝐅B:	
variation on	this idea [CV23]
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𝐸 𝐸′
𝜑 𝑃' = 𝜆𝜑 𝑃

𝑄' = 𝜆𝜑(𝑄)
𝑃
𝑄

6.	Analysis	of	a	countermeasure (M-SIDH)

Similar	observation:	write Π for matrix	of	 �𝜋B with respect	to 𝑃, 𝑄 ∈ 𝐸[𝑁],	then

𝜑(B) ∘ �𝜑
𝑃′
𝑄′

= 𝑑 𝜑(B)
𝜆 𝑃
𝜆 𝑄

= 𝑝#!𝑑 (𝜑(B)∘ 𝜋B) Π
𝜆 𝑃
𝜆 𝑄

= 𝑝#!𝑑 𝜋B ∘ 𝜑 Π
𝜆 𝑃
𝜆 𝑄

= 𝑝#!𝑑 Π
𝑃'

𝑄'

𝐸'(B)

𝜋B
𝜑(B)

𝜋B

if cyclic:	recover 𝜑 from
this



Combination:
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𝐸 𝐸′
𝜑 𝑃' = 𝜆𝜑 𝑃

𝑄' = 𝜆𝜑(𝑄)
𝑃
𝑄

6.	Analysis	of	a	countermeasure (M-SIDH)

Now:	write Ω for matrix	of	 �𝜋B ∘ 𝜎 with respect	to 𝑃, 𝑄 ∈ 𝐸[𝑁],	then

𝜑(B) ∘ 𝜎 ∘ �𝜑
𝑃′
𝑄′

= 𝑑 (𝜑 B ∘ 𝜎)
𝜆 𝑃
𝜆 𝑄

= 𝑝#!𝑑 (𝜑(B)∘ 𝜋B) Ω
𝜆 𝑃
𝜆 𝑄

= 𝑝#!𝑑 𝜋B ∘ 𝜑 Ω
𝜆 𝑃
𝜆 𝑄

= 𝑝#!𝑑 Ω
𝑃'

𝑄'
if	cyclic	and 𝑁 > 𝑑 deg 𝜎:	recover 𝜑 from

this

𝐸'(B)

𝜋B

𝜑(B)

𝜋B

𝐸(B)

𝜎

existence	of	smallish
𝜎 may be hard	to
detect (backdoors)



¿Preguntas?
Muchísimas gracias por	su atención!	
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