Breaking SIKE: math and aftermath

Wouter Castryck (KU Leuven)

Latincrypt, Universitad de las Fuerzas Armadas, Quito, 4 October 2023

1. Post-quantum cryptography

Nearly all currently deployed public-key cryptography is based on hardness of:
$>$ integer factorization (RSA)

$$
n=p \cdot q \longrightarrow p, q ?
$$

$>$ discrete logarithm problem (ECC)

$$
P, d P \in E\left(\mathbf{F}_{q}\right) \longrightarrow d ?
$$

Certificate Fields
∇ *.espe.edu.ec
∇ Certificate

Version
Serial Number
Certificate Signature Algorithm
Issuer

Field Value
PKCS \#1 SHA-256 Wit/RSA Encryption

1994: Peter Shor describes an $\left\{\begin{array}{l}O\left(\log ^{3} n\right) \text { quantum algorithm solving both } \\ \text { problems } \\ O\left(\log ^{3} q\right)\end{array}\right.$

1. Post-quantum cryptography

Will (universal) quantum computers become real? Mixed opinions.

More consensus: risk that this happens in the nearish future is non-negligible. motivates rapid transition to post-quantum cryptography:
> long pipeline frompropesal to deployment,
$>$ long-term secrets are under threat now.
cryptography that

- runs on classical computers,
- resists quantum computers

2017: NIST initiates "standardization effort" for key encapsulation and signatures

1. Post-quantum cryptography

Main contending hard problems:

finding short vectors in lattices

decoding for random linear codes

finding isogenies between elliptic curves

$$
\left\{\begin{array}{c}
f_{1}\left(s_{1}, \ldots, s_{n}\right)=0 \\
\vdots \\
f_{m}\left(s_{1}, \ldots, s_{n}\right)=0
\end{array}\right.
$$

solving non-linear systems of equations

finding preimages under hash functions

1. Post-quantum cryptography

2020: Preliminary NIST standards:
\ldots \# LMS (stateful signatures)
\ldots \# XMSS (stateful signatures)

2022: First main NIST standards:
$\therefore \div$ Kyber (key encapsulation)
$\begin{aligned} & \therefore \\ & \therefore \because \text { Dilithium (signatures) } \\ & \therefore \text { Falcon (signatures) } \\ & \square \text { SPHINCS }+ \text { (signatures) }\end{aligned}$
broken few weeks after selection [CD23], [MMP+23], [Rob23]

Moved to extra round of scrutiny:

тापवागयन वापणगणनपा

2. The isogeny-finding problem

Definitio

A homomorphism between two elliptic curves E and E^{\prime} over a field k is a morphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(\infty)=\infty^{\prime}$.

An isogeny is a non-constant homomorphism.

Facts:

$>$ isogenies are surjective group homomorphisms with finite kernel (on \bar{k} poifasts: - if φ is separable then $\# \operatorname{ker} \varphi=\operatorname{deg} \varphi$

- every finite subgroup $K \subset E$ is the kernel of a separable isogeny
makes sense to write $E^{\prime}=E / K$

$$
\varphi: E \rightarrow E^{\prime} \quad \text { (e.g., via Vélu's }
$$

and this is cinique up to post-composing φ with an isomorphism

2. The isogeny-finding problem

Definitio

A homomorphism between two elliptic curves E and E^{\prime} over a field k is a morphism $\varphi: E \rightarrow E^{\prime}$ such that $\varphi(\infty)=\infty^{\prime}$.

An isogeny is a non-constant homomorphism.

Facts:

$>$ isogenies are surjective group homomorphisms with finite kernel (on \bar{k} points),
$>$ for each isogeny $\varphi: E \rightarrow E^{\prime}$ there is a unique dual isogeny $\hat{\varphi}: E^{\prime} \rightarrow E$ such that

2. The isogeny-finding problem

Theorem [Tat66]
Two elliptic curves E, E^{\prime} over \mathbf{F}_{q} are isogenous over \mathbf{F}_{q} if and only if

$$
\# E\left(\mathbf{F}_{q}\right)=\# E^{\prime}\left(\mathbf{F}_{q}\right) .
$$

The isogeny-finding problem is to find an efficient algorithm with
$>$ input: two elliptic curves E, E^{\prime} over \mathbf{F}_{q} satisfying $\# E\left(\mathbf{F}_{q}\right)=\# E^{\prime}\left(\mathbf{F}_{q}\right)$
$>$ output: an \mathbf{F}_{q}-isogeny $\varphi: E \rightarrow E^{\prime}$

Best known general algorithms: - exponential time complexity,

- quantum computers do not seem to help

2. The isogeny-finding problem

Remark: in general non-trivial how to represent an \mathbf{F}_{q}-isogeny $\varphi: E \rightarrow E^{\prime}$!
$>$ If $\operatorname{deg} \varphi$ is smooth, can write φ as composition of small-degree isogenies.
default understanding of "outputting an isogeny"
$>$ If $E[N] \subset E\left(\mathbf{F}_{q}\right)$ for smooth $N>2 \sqrt{\operatorname{deg} \varphi}$, return

- $\operatorname{deg} \varphi$,
- $\varphi(P), \varphi(Q)$ for some basis $P, Q \in E[N]$.
most important bymost imporack [Rob22a]
product of attacher

2. The isogeny-finding problem

Remark: in general non-trivial how to represent an \mathbf{F}_{q}-isogeny $\varphi: E \rightarrow E^{\prime} \ldots$
$>$ If $\operatorname{deg} \varphi$ is smooth, return φ as composition of small-degree isogenies.

> default understanding of "returning an isogeny"
$>$ If $E[N] \subset E\left(F_{q}\right)$ for smooth $N>2 \sqrt{\operatorname{deg} \varphi}$, return
(for the moment, forget about this)

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE) 8/24

High-level idea:
Constructive problem:

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE) ${ }^{8 / 24}$

Solution [JDF11]: choose public bases $P_{A}, Q_{A} \in E\left[N_{A}\right], P_{B}, Q_{B} \in E\left[N_{B}\right]$

Bob reveals $\varphi_{B}\left(P_{A}\right), \varphi_{B}\left(Q_{A}\right)$ \longrightarrow allows Alice to compute $\varphi_{B}(A)=\left\langle\varphi_{B}\left(P_{A}\right)+a \varphi_{B}\left(Q_{A}\right)\right\rangle$

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

Solution [JDF11]: choose public bases $P_{A}, Q_{A} \in E\left[N_{A}\right], P_{B}, Q_{B} \in E\left[N_{B}\right]$

$$
\left\langle\begin{array}{c}
E \\
\mid
\end{array} E_{A}=E / A\right.
$$

Technical remarks:
$>N_{A}=\operatorname{deg} \varphi_{A}, N_{B}=\operatorname{deg} \varphi_{B}$ must be smooth
$>$ why supersingular?

- makes for hardest isogeny-finding problem,

$$
E_{B}=E / B
$$

- good control over torsion / base field
- not crucial for attack

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE) ${ }^{9 / 24}$

Very important to note: recovering Alice's secret isogeny

is not a pure instance of the isogeny-finding problem!
$>$ Recurring issue in cryptographic design.
$>$ Torsion point information was already shown to reveal φ_{A} if $N_{B} \gg N_{A}$ [Pet17], [dQKL+20].
$>$ Pure isogeny-finding problem remains hard.

4. Recovering an isogeny from torsion point

 infferfepartio, $\begin{aligned} & \text { Pcus on following problem: }\end{aligned}$

- $E, E^{\prime} / \mathbf{F}_{q}$ connected by an \mathbf{F}_{q}-isogeny φ of known degree d,
- a basis $P, Q \in E[N] \subset E\left(\mathbf{F}_{q}\right)$ for smooth and large enough N,
- $P^{\prime}=\varphi(P), Q^{\prime}=\varphi(Q) \in E^{\prime}[N]$.
$>$ output: a representation of φ.
Lemma [JU18]
A degree- d isogeny $\varphi: E \rightarrow E^{\prime}$ is uniquely determined by the images of $4 d+1$ points.

4. Recovering an isogeny from torsion point infor fonati@proach of [Rob23]. Inspiration: [Kan97].

Special first case: $N>d$

$$
N-d=a^{2} \text { is square }
$$

Consider:

$$
\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right)
$$

$$
\Phi: E \times E^{\prime} \longrightarrow E \times E^{\prime}
$$

One checks $\widehat{\Phi} \circ \Phi=\Phi \circ \widehat{\Phi}=N$, i.e., Φ is an (N, N)-isogeny.
4. Recovering an isogeny from torsion point infor motiapproach of [Rob23]. Inspiration: [Kan97].

$$
\begin{aligned}
E & \varphi \\
P, Q & P^{\prime}=\varphi(P), Q^{\prime}=\varphi(Q)
\end{aligned}
$$

Special first case: $N>d$

$$
N-d=a^{2} \text { is square }
$$

Consider:

$$
\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right)
$$

$$
\Phi: E \times E^{\prime} \longrightarrow E \times E^{\prime}
$$

One checks $\widehat{\Phi} \circ \Phi=\Phi \circ \widehat{\Phi}=N$, i.e., Φ is an $(\Lambda$
Proof:

$$
\widehat{\Phi} \circ \Phi=\left(\begin{array}{cc}
a & -\hat{\varphi} \\
\varphi & a
\end{array}\right)\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right)=
$$

$$
\left(\begin{array}{cc}
a^{2}+\hat{\varphi} \varphi & 0 \\
0 & a^{2}+\hat{\varphi} \varphi
\end{array}\right)=\left(\begin{array}{cc}
a^{2}+d & 0 \\
0 & a^{2}+d
\end{array}\right)
$$

4. Recovering an isogeny from torsion point infor fopatiapproach of [Rob23]. Inspiration: [Kan97].

Special first case: $N>d$

$$
N-d=a^{2} \text { is square }
$$

Consider:

$$
\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right)
$$

$$
\Phi: E \times E^{\prime} \longrightarrow E \times E^{\prime}
$$

One checks $\widehat{\Phi} \circ \Phi=\Phi \circ \widehat{\Phi}=N$, i.e., Φ is an (N, N)-isogeny.
Crucially: we know $\operatorname{ker} \Phi=\left\langle\left(a P, P^{\prime}\right),\left(a Q, Q^{\prime}\right)\right\rangle$.
4. Recovering an isogeny from torsion point infweromatiapproach of [Rob23]. Inspiration: [Kan97].

Special first case: $N>d$

$$
N-d=a^{2} \text { is square }
$$

Consider:

$$
\Phi: E \times E^{\prime} \xrightarrow{\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right)} E \times E^{\prime}
$$

One checks $\widehat{\Phi} \circ \Phi=\Phi \circ \widehat{\Phi}=N$, i.e., Φ is an $(\Lambda$

Proof sketch:

$$
\begin{aligned}
& \Phi\left(a P, P^{\prime}\right)=\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right)\binom{a P}{\varphi(P)} \\
&=\binom{\left(a^{2}+d\right) P}{\infty^{\prime}}=\left(\infty, \infty^{\prime}\right)
\end{aligned}
$$

and likewise for $\left(a Q, Q^{\prime}\right)$.

Crucially: we know ker $\Phi=\left\langle\left(a P, P^{\prime}\right),\left(a Q, Q^{\prime}\right)\right\rangle$.

4. Recovering an isogeny from torsion point

 infor fonatiopproach of [Rob23]. Inspiration: [Kan97].

Special first case: $N>d$

$$
N-d=a^{2} \text { is square }
$$

Consider:

$$
\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right)
$$

$$
\Phi: E \times E^{\prime} \longrightarrow E \times E^{\prime}
$$

One checks $\widehat{\Phi} \circ \Phi=\Phi \circ \widehat{\Phi}=N$, i.e., Φ is an (N, N)-isogeny. !
Consequence:
using two-dimensional analogues of Vélu, we can compute $\varphi(X)$ as the first component of
$-\Phi(\mathrm{X}, \infty)$, for apy $X \in E$ easy to determine
Crucially: we know $\operatorname{ker} \Phi=\left\langle\left(a P, P^{\prime}\right),\left(a Q, Q^{\prime}\right)\right\rangle$. $\operatorname{ker} \varphi$ from this
4. Recovering an isogeny from torsion point

information
 Particularly nice case: $N=2^{n}$

Then Φ is a composition of (2,2)-isogenies.
$\operatorname{ker} \Phi_{1}=2^{n-1} \operatorname{ker} \Phi=\left\langle\left(2^{n-1} a P, 2^{n-1} P^{\prime}\right),\left(2^{n-1} a Q, 2^{n-1} Q^{\prime}\right)\right\rangle$

4. Recovering an isogeny from torsion point information

Particularly nice case: $N=2^{n}$
Then Φ is a composition of (2,2)-isogenies.
Richelot isogenies (19th century)

Also explicit: (3,3)-isogenies [BFT14]; otherwise resort to [LR22].
4. Recovering an isogeny from torsion point infnrmation
P, Q

$$
P^{\prime}=\varphi(P), Q^{\prime}=\varphi(Q)
$$

Next case: $N>d$

$$
N-d=a_{1}^{2}+a_{2}^{2} \text { is sum of two squares }
$$

Approach: same, but use

$$
\Phi: E^{2} \times E^{\prime 2} \xrightarrow{\left(\begin{array}{cccc}
a_{1} & a_{2} & \hat{\varphi} & 0 \\
-a_{2} & a_{1} & 0 & \hat{\varphi} \\
-\varphi & 0 & a_{1} & -a_{2} \\
0 & -\varphi & a_{2} & a_{1}
\end{array}\right)} E^{2} \times E^{\prime 2}
$$

Now must resort to algorithms from [LR22].
4. Recovering an isogeny from torsion point
P, Q

$$
P^{\prime}=\varphi(P), Q^{\prime}=\varphi(Q)
$$

Next case: $N>d$

$$
N-d=a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2} \text { is sum of four squares (Lagrange) }
$$

$$
\begin{aligned}
& \text { Approach: } \\
& \text { work on } E^{4} \times E^{\prime 4} \text { and use }\left(\begin{array}{cccccccc}
a_{1} & -a_{2} & -a_{3} & -a_{4} & \hat{\varphi} & 0 & 0 & 0 \\
a_{2} & a_{1} & a_{4} & -a_{3} & 0 & \hat{\varphi} & 0 & 0 \\
a_{3} & -a_{4} & a_{1} & a_{2} & 0 & 0 & \hat{\varphi} & 0 \\
a_{4} & a_{3} & -a_{2} & a_{1} & 0 & 0 & 0 & \hat{\varphi} \\
-\varphi & 0 & 0 & 0 & a_{1} & a_{2} & a_{3} & a_{4} \\
0 & -\varphi & 0 & 0 & -a_{2} & a_{1} & -a_{4} & a_{3} \\
0 & 0 & -\varphi & 0 & -a_{3} & a_{4} & a_{1} & -a_{2} \\
0 & 0 & 0 & -\varphi & -a_{4} & -a_{3} & a_{2} & a_{1}
\end{array}\right)
\end{aligned}
$$

4. Recovering an isogeny from torsion point

 infnrmation$P, Q \quad P^{\prime}=\varphi(P), Q^{\prime}=\varphi(Q)$
Full case: $N>\sqrt{d}$
$N^{2}-d=a^{2}$ or $a_{1}^{2}+a_{2}^{2}$ or $a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}$
Approach: proceed as if we know the images of $\frac{1}{N} P, \frac{1}{N} Q \in E\left[N^{2}\right]$.

4. Recovering an isogeny from torsion point infnrmation
P, Q

$$
P^{\prime}=\varphi(P), Q^{\prime}=\varphi(Q)
$$

Full case: $N>\sqrt{d}$

$$
N^{2}-d=a^{2} \text { or } a_{1}^{2}+a_{2}^{2} \text { or } a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}
$$

Approach: proceed as if we know the images of $\frac{1}{N} P, \frac{1}{N} Q \in E\left[N^{2}\right]$.

4. Recovering an isogeny from torsion point infnrmation
$P, Q \quad P^{\prime}=\varphi(P), Q^{\prime}=\varphi(Q)$
Full case: $N>\sqrt{d}$

$$
N^{2}-d=a^{2} \text { or } a_{1}^{2}+a_{2}^{2} \text { or } a_{1}^{2}+a_{2}^{2}+a_{3}^{2}+a_{4}^{2}
$$

Approach: proceed as if we know the images of $\frac{1}{N} P, \frac{1}{N} Q \in E\left[N^{2}\right]$.

$$
\begin{array}{cc}
A \underset{\text { ॥ }}{ } \xrightarrow{\Phi_{1}} A \\
E^{r} \times E^{\prime r} & \text { so we recover } \Phi \text { as } \widehat{\Phi}_{2} \circ \Phi_{1}
\end{array}
$$

4. Recovering an isogeny from torsion point infordanatyifß/SIKE in practice:
$>$ prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),
$>$ good news: $N_{A}=2^{n}$ and $N_{B}=3^{m}$ and either $N_{A}>N_{B}$ or $N_{B}>N_{A}$,
$>$ bad news: $\left|N_{A}-N_{B}\right|=a^{2}$ extremely unlikely,

$$
\Phi: E \times E^{\prime} \xrightarrow{\left(\begin{array}{cc}
a & \hat{\varphi} \\
-\varphi & a
\end{array}\right) ?} E \times E^{\prime}
$$

$>\left|N_{A}-N_{B}\right|=a_{1}^{2}+a_{2}^{2}$ more likely, but can we avoid dimension $4 ?$
Yes for special starting curves E !

4. Recovering an isogeny from torsion point

 information/SIKE in practice:$>$ prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),
$>$ good news: $N_{A}=2^{n}$ and $N_{B}=3^{m}$ and either $N_{A}>N_{B}$ or $N_{B}>N_{A}$,
$>$ bad news: $\left|N_{A}-N_{B}\right|=a^{2}$ extremely unlikely,

$$
E: y^{2}=x^{3}+x
$$

$\mathbf{i}: E \rightarrow E:(x, y) \mapsto(-x, \sqrt{-1} y)$

$$
\left(\begin{array}{cc}
\frac{\hat{u}_{1}+\mathbf{i} a_{2}}{-\left(a_{1}+\mathbf{i} a_{2}\right)_{*} \varphi} & \varphi_{*}\left(a_{1}+\mathbf{i} a_{2}\right)
\end{array}\right)
$$

$$
\Phi: E \times E^{\prime} \longrightarrow E \times C
$$

$>\left|N_{A}-N_{B}\right|=a_{1}^{2}+a_{2}^{2}$ more likely,
$>$ breaks all security levels of SIKE in seconds on a laptop [OP22], [DK23]

5. Aftermath

Reality check?
$>$ SIDH/SIKE is dead, despite having withstood 11 years of cryptanalysis
> Rainbow [Beu22] was broken 17 years after its proposal
$>$ Quantum threat is being taken very seriously ...
$>$... but aren't we underestimating the risk of algorithmic breakthrough (even in the case of integer factorization and discrete logarithm computation)?
> Plea for:

- not rushing things,
- hybrid encryption for long-term secrets,
- adaptable cryptography (quick drop-in replacements).

5. Aftermath

Future of isogeny-based cryptography?
> Finding isogenies remains hard: schemes like CSIDH, SQISign, ... unaffected.
$>$ Remains very active topic, but knocked back to high-level research phase.
$>$ There is also good news [Rob22a]: the attack is so efficient that one can now efficiently represent isogeny $\varphi: E \rightarrow E^{\prime}$ by specifying

- $\operatorname{deg} \varphi$,
- $\varphi(P), \varphi(Q)$ for basis $P, Q \in E[N]$ with $N>2 \sqrt{d}$.
$>$ Led to multiple constructive uses: SQISignHD [DLR+23], FESTA [BMP23], SCALLOP-HD [CL23], ...

5. Aftermath

Mathematical updates:
> Recall:

Lemma [JU18]

A degree- d isogeny $\varphi: E \rightarrow E^{\prime}$ is uniquely determined by images of $4 d+1$ points.

At Bristol/Banff workshop 2023: made fully algorithmic.
$>$ Other applications [Rob22b]:

- computing End (E) for ordinary E / \mathbf{F}_{q} in polytime, given factorization of discriminant,
- point counting on $E / \mathbf{F}_{p^{n}}$ in time $O\left(n^{2} \cdot \operatorname{poly}(\log p)\right)$,
- unconditional $\tilde{O}\left(\ell^{3}\right)$-algorithm for computing ℓ th modular polynomial.

6. Analysis of a countermeasure (M-SIDH)

We recall:

Bob reveals \longrightarrow allows Alice to compute $\varphi_{B}(A)=\left\langle\varphi_{B}\left(P_{A}\right)+a \varphi_{B}\left(Q_{A}\right)\right\rangle$

6. Analysis of a countermeasure (M-SIDH)

Leads to following variant:

$$
\begin{aligned}
E & \varphi \\
P, Q & P^{\prime}=\lambda \varphi(P), Q^{\prime}=\lambda \varphi(Q)
\end{aligned}
$$

$>$ input:

- $E, E^{\prime} / \mathbf{F}_{q}$ connected by an \mathbf{F}_{q}-isogeny φ of known degree d,
- a basis $P, Q \in E[N] \subset E\left(\mathbf{F}_{q}\right)$ for smooth $N>d$,
- $P^{\prime}=\lambda \varphi(P), Q^{\prime}=\lambda \varphi(Q) \in E^{\prime}[N]$ for some $\lambda \in(\mathbf{Z} / N \mathbf{Z})^{*}$
$>$ output: a representation of φ.
Weil pairing: $e_{N}\left(P^{\prime}, Q^{\prime}\right)=e_{N}(\lambda \varphi(P), \lambda \varphi(Q))=e_{N}(P, Q)^{\lambda^{2} d} \longrightarrow$ reveals λ^{2}
Must assume N has many distinct prime factors in order to keep λ secret [FMP23].

6. Analysis of a countermeasure (M-SIDH)

If E or E^{\prime} carries small non-scalar endomorphism σ : lollipop attack [FMP23]

Observation: write $\Sigma \in(\mathbf{Z} / N \mathbf{Z})^{2 \times 2}$ for matrix of σ with respect to $P, Q \in E[N]$, then

$$
(\varphi \circ \sigma \circ \hat{\varphi})\binom{P^{\prime}}{Q^{\prime}}=d(\varphi \circ \sigma)\binom{\lambda P}{\lambda Q}=d \varphi \Sigma\binom{\lambda P}{\lambda Q}=d \Sigma\binom{P^{\prime}}{Q^{\prime}}
$$

If $N>\sqrt{\operatorname{deg}(\hat{\varphi} \circ \sigma \circ \varphi)}=d \sqrt{\operatorname{deg} \sigma}$, results in a representation of $\hat{\varphi} \circ \sigma \circ \varphi$.

6. Analysis of a countermeasure (M-SIDH)

If E is defined over \mathbf{F}_{p} : variation on this idea [CV23]

Similar observation: write Π for matrix of $\hat{\pi}_{p}$ with respect to $P, Q \in E[N]$, then

$$
\begin{aligned}
\left(\varphi^{(p)} \circ \hat{\varphi}\right)\binom{P^{\prime}}{Q^{\prime}}=d \varphi^{(p)}\binom{\lambda P}{\lambda Q} & =p^{-1} d\left(\varphi^{(p)} \circ \pi_{p}\right) \Pi\binom{\lambda P}{\lambda Q} \\
& =p^{-1} d\left(\pi_{p} \circ \varphi\right) \Pi\binom{\lambda P}{\lambda Q}=p^{-1} d \Pi\binom{P^{\prime}}{Q^{\prime}}
\end{aligned}
$$ this

6. Analysis of a countermeasure (M-SIDH)

Now: write Ω for matrix of $\hat{\pi}_{p} \circ \sigma$ with respect to $P, Q \in E[N]$, then

$$
\begin{gathered}
\left(\varphi^{(p)} \circ \sigma \circ \hat{\varphi}\right)\binom{P^{\prime}}{Q^{\prime}}=d\left(\varphi^{(p)} \circ \sigma\right)\binom{\lambda P}{\lambda Q}=p^{-1} d\left(\varphi^{(p)} \circ \pi_{p}\right) \Omega\binom{\lambda P}{\lambda Q} \\
=p^{-1} d\left(\pi_{p} \circ \varphi\right) \Omega\binom{\lambda P}{\lambda Q}=p^{-1} d \Omega\binom{P^{\prime}}{Q^{\prime}} \\
\text { if cyclic and } N>d \sqrt{\operatorname{deg} \sigma}: \text { recover } \varphi \text { from }
\end{gathered}
$$

¿Preguntas?

Muchísimas gracias por su atención!

References

[Beu22] Beullens, Breaking Rainbow takes a weekend on a laptop
[BFT14] Bruin, Flynn, Testa, Descent via (3,3)-isogeny on Jacobians of genus 2 curves
[BMP23] Basso, Maino, Pope, FESTA: fast encryption from supersingular torsion attacks
[CD23] Castryck, Decru, An efficient key recovery attack on SIDH
[CV23] Castryck, Vercauteren, A polynomial time attack on instances of M-SIDH and FESTA
[DLR+23] Dartois, Leroux, Robert, Wesolowski, SQISignHD: new dimensions in cryptography
[DK23] Decru, Kunzweiler, Efficient computation of ($3^{n}, 3^{n}$)-isogenies
[DF+23] De Feo et al, Modular isogeny problems
[dQKL+20] de Quehen, Kutas, Leonardi, Martindale, Panny, Petit, Stange, Improved torsion-point attacks on SIDH variants
[FMP23] Fouotsa, Moriya, Petit, M-SIDH and MD-SIDH: countering SIDH attacks by masking information
[HLPOO] Howe, Leprévost, Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three
[JDF11] Jao, De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies
[JU18] Jao, Urbanik, The problem landscape of SIDH
[Kan97] Kani, The number of curves of genus two with elliptic differentials
[LR22] Lubicz, Robert, Fast change of level and applications to isogenies
[MMP+23] Maino, Martindale, Panny, Pope, Wesolowski, A direct key recovery attack on SIDH
[OP22] Oudompheng, Pope, A note on reimplementing the Castryck-Decru attack and lessons learned for SageMath
[Pet17] Petit, Faster algorithms for isogeny problems using torsion point images
[Rob22a] Robert, Evaluating isogenies in polylogarithmic time
[Rob22b] Robert, Some applications of higher dimensional isogenies to elliptic curves (overview of results)
[Rob23] Robert, Breaking SIDH in polynomial time
[Tat66] Tate, Endomorphisms of abelian varieties over finite fields

