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1. Post-quantum cryptography

Nearly all currently deployed public-key cryptography is based on hardness of:
» integer factorization (RSA)

Certificate Fields

v *espe.edu.ec

n = p * q — p, q ? v Certificate
Version
> discrete logarithm problem (ECC) e o |
Certificate Signature Algorithm
P,dP € E(F;)) — d?

Field Value

PKCS #1 SHA-256 Wit RSA Encryption

1994: Peter Shor describes an | 0(log3n) quantum algorithm solving both
problems 0(log3q)
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1. Post-quantum cryptography

Will (universal) quantum computers become real? Mixed opinions.

More consensus: risk that this happens in the nearish future is non-negligible.

l

motivates rapid transition t

st-quantum cryptograp

» long pipeline fro yment,

» long-term secrets are under threat now.

cryptography that
" runs on classical computers,
" resists quantum computers

2017: NIST initiates “standardization effort” for key encapsulation and signatures



1. Post-quantum cryptography

Main contending hard problems:
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finding short decoding for random
vectors in linear codes
lattices

(f1(51» v Sp) =0

Kfm(sl' ...,Sn) =0

solving non-linear
systems of
equations
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§E

finding isogenies
between elliptic
curves

— h

finding preimages

under hash
functions
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. Post-quantum cryptography

2020: Preliminary NIST standards: :
broken few weeks after selection
LMS (stateful signatures) [CD23], [MMP+23], [Rob23]

XMSS (stateful signatures)

2022: First main NIST standards: Moved to extra round of scrutiny:

/'/‘ Kyber (key encapsulation) BIKE (key encapsulation)

%7 Dilithium (signatures)
,r/v. Falcon (signatures)

SPHINCS+ (signatures)

McEliece (key encapsulation)

HQC (key encapsulation)

- C< SIKE (key encapsuﬁm;

2023: Renewed competition for signatures
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2. The isogeny-finding problem

- Definitio \

A homomorphism between two elliptic curves E and E’ over a field k is a
morphism ¢: E — E’ such that ¢(o0) = o', 7 E'
An isogeny is a non-constant homomorphism. EC< C<

\, J

Facts:
> isogenies are surjective group homomorphisms with finite kernel (on k-
poifasls: = if ¢ is separable then # ker ¢ = deg ¢ 42
= every finite subgroup K C E is the kernel of a separable isogeny

makes sense to __ 0:E > E' (e.g., via Vélu’s

write E' = E/K f ]
and th 2 up to post-composing gg 1“/{,1%&1 ae)lsomorphlsm
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2. The isogeny-finding problem

- Definitio

A homomorphism between two elliptic curves E and E’ over a field k is a
morphism ¢: E — E’ such that ¢(o0) = o', 7 E'
An isogeny is a non-constant homomorphism. EC< C<

\, J

Facts:
> isogenies are surjective group homomorphisms with finite kernel (on k-

points),

> for eachisogeny ¢: E — E' there is a unique dual isogeny @: E' - E juch that

being iso@e‘h@uﬁ degRquivalefce LeatiSS
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2. The isogeny-finding problem

~ Theorem |Tat66]

Two elliptic curves E, E' over F, are isogenous over F, if and only if

#E(F,) = #E'(F,).

The isogeny-finding problem is to find an efficient algorithm with

> input: two elliptic curves E, E’ over F satisfying #E (F,) = #E'(F;)

» output: an F -isogeny ¢: E — E

Best known general algorithms: = exponential time complexity,

" gquantum computers do not seem to help
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2. The isogeny-finding problem

Remark: in general non-trivial how to represent an F,-isogeny ¢: E — E"!

» Ifdeg @ is smooth, can write ¢ as composition of small-degree isogenies.

default understanding ol)
“outputting an isogeny”

5. » IfE[N]| c E(F,) for smooth N > 2,/deg ¢, return
= dego, most imp

= o(P), p(Q) for some basis P,Q € E[N].
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2. The isogeny-finding problem

Remark: in general non-trivial how to represent an F -isogeny ¢: E — E"...

» Ifdeg ¢ is smooth, return ¢ as composition of small-degree isogenies.

default understanding ol)
“returning an isogeny”

(for the moment, forget about |
this)
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3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

High-level idea:
Constructive problem:

Pa

E . E,=E/A how do we allow Bob
to determine ¢4 (B)
without revealing
®a?

¥B
\
Eag = Eaf®a(B)
IR
) E/(A+B) <=

|12
- > Ep, = Ep/lpp(4) ... and likewise
for Alice



3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)
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Solution [JDF11]: choose public bases P,, Q4 € E[Ny4|, Pg, O € E[Ng]

Pa
E
A =(Py+ aly)
PB B=<PB+bQB>
\ 4
Er =E/B

Bob reveals

» E,=E/A

v
> EBA = EAB

©p(Pa), pp(Q4)

Alice reveals

©a(Pp), 94(Qp)
—

~

allows Bob to compute
0a(B) = (@a(Pg) + bps(Qp))

—D

—— allows Alice to compute @z(A) = (@z(Py) + apz(Q,4))
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Soblution [JDF11]: choose public bases P, Q4 € E[Ny4|, Pg, O € E[Ng]

Pa
E . E, = E/A
A= (Py+aQy)

Technical remarks:

P | R = (Pp + bQp)

» Ny =degpy, Np = deg ¢ 5 must be smooth

» why supersingular?

= makes for hardest isogeny-finding problem,

Ep =E/B = good control over torsion / base field

= not crucial for attack



3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

Very important to note: recovering Alice’s secret isogeny

_~— known smooth degree
Pa
E » E,=E/A

9/24

Y: A(Pp), 9a(Qp
)“torsion point

information”

is not a pure instance of the isogeny-finding problem!
» Recurring issue in cryptographic design.

» Torsion point information was already shown
to reveal @, if Ngp > N, |Petl17], |dQKL+20].

» Pure isogeny-finding problem remains hard.
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4. Recovering an isogeny from torsion point

lnf%mﬁﬂl(,)@cus on following problem:

E v > F' N > 2+/d would be the

P,Q P' = ¢(P),Q = @(0Q) optimal assumption

» input:
= E,E'/F, connected by an F,-isogeny ¢ of known degree d,

= abasisP,() € E[N] c E(F,;) for smooth and large enough N,
" Pl=¢(P),Q" =¢(Q) € E'[N].

» output: a representation of ¢.

Lemma [JU18]
[ A degree-d isogeny ¢: E — E'is uniquely determined by the images of 4d + 1 points.




4. Recovering an isogeny from torsion point
inﬁﬂ{ma\t’i@&oach of [Rob23]. Inspiration: [Kan97].

‘%
E » E'

P,Q P'=¢@(P),Q" = ¢(Q)

Special first case: N > d
N — d = a? is square

(% 4)

d: EXE’ » EXE’

Consider:

One checks @ o ® = ® o ® = N, i.e., ® is an (N, N)-isogeny.
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N — d = a? is square

(% 4)
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Consider:
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4. Recovering an isogeny from torsion point
inﬁﬂ{ma\t’i@&oach of [Rob23]. Inspiration: [Kan97].

‘%
E » E'

P,Q P'=¢@(P),Q" = ¢(Q)

Special first case: N > d
N — d = a? is square

(% 4)

d: EXE’ » EXE’

Consider:

One checks @ o ® = ® o ® = N, i.e., ® is an (N, N)-isogeny.
Crucially: we know ker ® =( (aP, P"), (aQ,0") ).



4. Recovering an isogeny from torsion point
inﬁﬂ{m&tfiibproach of [Rob23]. Inspiration: [Kan97].

‘%
E » E'

P,Q P'=¢@(P),Q" = ¢(Q)

Special first case: N > d
N — d = a? is square

Consider: 2 :
a (;0\ ‘«"l % 7
_QD a j.: : ‘P(P))
O : EXE’ » EXE' | ¥ ((a2 )

One checks Po® = P o d = N, i.e., Pisan (1‘¢

: ond likewise for (aQ,Q").

11/24

Crucially: we know ker & =( (aP,P’), (aQ,Q'yy.
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4. Recovering an isogeny from torsion point
inﬁﬂd'ma\tliﬁproach of [Rob23]. Inspiration: [Kan97].

'z

E > F
P,Q P'=¢@(P),Q" = ¢(Q)
Special first case: N > d
—d = a2j
| N —d = a”is square Consequence:
Consider: using two-dimensional
( a gﬁ) analogues of Velu, we
—@ a can compute @ (X) as the
d : EXE’ » EXE’ first component of

Y . — O (X, o), for arlyX €EE
One checks @ o ® =P o P =N, i.e., ®isan (N, N)-isogeny. |

easy to determine
Crucially: we know ker ® =( (aP, P’"), (aQ,Q") ). ker ¢ from this



4. Recovering an isogeny from torsion point

n glrt%?zﬁ'll)(r) Irllice case: N = 2™

Then @ is a composition of (2,2)-isogenies.

ker®; = 2" 1ker® = (2" tapP, 2™ 1P"), (2" 1a0, 2" 10"))

| N
© P90

ker @, = 2" 2d, (ker ®)
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and so on ...
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4. Recovering an isogeny from torsion point

lngglrt%?z}:r]l)(r) Irllice case: N = 2"

Then @ is a composition of (2,2)-isogenies.

Richelot isogenies (19th century)

/ \
D4 b, Dpq b,

explicit gluing formulae [HLPOO

Also explicit: (3,3)-isogenies |[BFT14|; otherwise resort to [LR22].
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4. Recovering an isogeny from torsion point

infrrmation ¢ ,
E > E

P,Q P'=@(P),Q" = ¢(Q)

Next case: N > d
N —d = a? + a5 is sum of two squares

Approach: same, but use

a a @ 0
0

—a; a4 P
- 0 a —-a
0 —@p da a4
d : E*XE'? » E?XE'?

Now must resort to algorithms from |[LR22].



4. Recovering an isogeny from torsion point
infngmation ¢

> F'
P,Q P'=@(P),Q" = ¢(Q)

Next case: N > d
N —d = a? + a5 + a5 + a3 is sum of four squares (Lagrange)

Approach: a, —-a, —as —a, @ 0 0
work on E4XE’* and use / a, a a, —az O 0 0

az; —a, a4 a, 0 0 0,

a, a3 —a, aq 0 0 0
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4. Recovering an isogeny from torsion point

infrrmation ¢ ,
E > E

P,Q P'=@(P),Q" = ¢(Q)

Full case: N >+/d
N?—d=a? or a® +a5 or af+a%+a%+ as

Approach: proceed as if we know the images of %P, %Q € E[N?].

d?
A » A

15/24

E"XE'™ L we no longer know ker &...




4. Recovering an isogeny from torsion point

infrrmation ¢ ,
E » E

P,Q P'=@(P),Q" = ¢(Q)

Full case: N >+/d
N?—d=a? or a® +a5 or af+a%+a%+ as

Approach: proceed as if we know the images of %P, %Q € E[N?].

d d
A ! . X < 2 A

| ' T we also know N (ker @)

E"XE'™
but we do know N (ker ®)!
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4. Recovering an isogeny from torsion point

infrrmation ¢ ,
E > E

P,Q P'=@(P),Q" = ¢(Q)

Full case: N >+/d
N?2—-d=a? or a?+a5 or a?+a5+ a5+ a3

Approach: proceed as if we know the images of %P, %Q € E[N?].

AN

D &
A ! . X < 2 A

I
r r S
E"XE so we recover ® as @, o P,

15/24
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4. Recovering an isogeny from torsion point
m%@&‘i&%@l@ﬁ/ SIKE in practice:

» prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),
» good news: Ny = 2" and Ng = 3™ and either Ny > Ng or Ng > Ny,

> bad news: |Ny — Ng| = a® extremely unlikely,

& &

d: EXE’ » EXE’

> |N4y — Ng| = a? + a5 more likely, but can we avoid dimension 47

>

Yes for special starting curves E! <
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4. Recovering an isogeny from torsion point
m%@&‘i&%@l@ﬁ/ SIKE in practice:

» prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),
» good news: Ny = 2" and Ng = 3™ and either Ny > Ng or Ng > Ny,
> bad news: |Ny — Ng| = a® extremely unlikely,

E:y? =x3+x —

i E B () o (xV=Ty) LTz 0 N
—(ay Fliaz).¢ @.(a; +iay)
d: EXE’ » EXC

> |N4y — Ng| = a? + a5 more likely,

» breaks all security levels of SIKE in seconds on a laptop [OP22], [DKZ23]
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5. Aftermath

Reality check?
» SIDH/SIKE is dead, despite having withstood 11 years of cryptanalysis
» Rainbow [Beu22]| was broken 17 years after its proposal
» Quantum threat is being taken very seriously ...

» ...but aren’t we underestimating the risk of algorithmic breakthrough (even

in the case of integer factorization and discrete logarithm computation)?

» Plea for:
* notrushing things,

* hybrid encryption for long-term secrets,

» adaptable cryptography (quick drop-in replacements).



18/24

5. Aftermath next big thing in
. isogeny-based crypto

Future of isogeny-based cryptography? l

» Finding isogenies remains hard: schemes like CSIDH, SQISign, ...
unaffected.

» Remains very active topic, but knocked back to high-level research phase.

» There is also good news [Rob22a]: the attack is so efficient that one can
now efficiently represent isogeny ¢: E — E' by specifying

= dego,
= ¢(P), (0Q) for basis P,Q € E[N] with N > 2+/d.

» Led to multiple constructive uses: SQISignHD [DLR+23]|, FESTA [BMP23],
SCALLOP-HD [CL23], ...
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5. Aftermath

Mathematical updates:

» Recall:
-~ Lemma [JU18]
A degree-d isogeny ¢: E — E' is uniquely determined by images of 4d + 1 points.

At Bristol/Banff workshop 2023: made fully algorithmic.

» Other applications [Rob22b]:

* computing End(E) for ordinary E /F; in polytime, given factorization of
discriminant,

* point counting on E /Fy» in time O (n? - poly(log p)),

= unconditional O(#3)-algorithm for computing £th modular polynomial.
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6. Analysis of a countermeasure (M-SIDH)

We recall:

Pa
E » E,=E/A Alicereveals

A= (Pat+aQy) ©a(Pp), 94(QB)
—
~
allows Bob to compute
Pa(B) = (@a(Pg) + bps(Qp))

VB B=<PB+bQB>

! [t suffices to reveal L@, (Pg), Ap,(0Qp) for some secret A!

[ Observation
Er =E/B

Bob reveals

©p(Pa), pp(Qa) — allows Alice to compute ¢(A) = (¢p(Pa) + app(Qa))
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6. Analysis of a countermeasure (M-SIDH)

Leads to following variant:

2
E » E'

P,Q P'=2¢(P),Q" = 1¢(Q)

» input:

= E,E'/F, connected by an F,-isogeny ¢ of known degree d,
= abasis P,Q € E[N] c E(F,;) for smooth N > d,
= P'=Ap(P),0" =A¢p(0Q) € E'|N] forsome 1 € (Z/NZ)*

> output: a representation of .
Weil pairing: ey (P, Q") = ey(10(P), 1¢(Q)) = ey(P, 0)¥4 — reveals 12

Must assume N has many distinct prime factors in order to keep 4 secret |[FMP23].



22/24

6. Analysis of a countermeasure (M-SIDH)

If E or E' carries small non-scalar endomorphism o: lollipop attack [FMP23]

¢
o E = s E'
C p ¥ P' = ¢p(P)
0 Q' = 1¢p(Q)

Observation: write ¥ € (Z/NZ)?*? for matrix of o with respect to P, Q € E[N], then

(¢°0°¢)<gi>=d(¢°0)(jg)=d¢2(jg)=d2(gi>

IftN > \/deg(gﬁ ogo @) =d,/degao, results in a representation of ¢ o g o @.

if cyclic: recover ¢ from
this
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6. Analysis of a countermeasure (M-SIDH)
If E is defined over F,:

E'(p)
variation on this 1dea |[CV23] (p(P)
”p
>
P’ = Ap(P)
Q' = 1¢(Q)

Similar observation: write II for matrix of 7, with respectto P,Q € E[N], then

(¢®) < @) (Z) =d p® (:11 Z) =p td (pPomy) Tl G g)

< =p~'d (mpo )Tl (:11 g) =p 'dll (Z)

if cyclic: recover ¢ from
this




6. Analysis of a countermeasure (M-SIDH)

At (p)
Combination: 5@ @ . p®
- ( [
existence of smallish » E
o may be hard to ¥ P" = ¢ (P)
detect (backdoors) Q Q" = A¢p(Q)

Now: write ) for matrix of 7, e o with respect to P, Q € E[N], then

p’ p AP
D) o o 7 OF 1 ()
(P og w)(Q,> d (P 0)( Q) p~td (@ np)ﬂ(w)

< =p~ld (m, 0 ¢) Q (jg)=p_1dﬂ(

if cyclicand N > d./deg o: recover ¢ from
this

!

QI

0)
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;Preguntas?

Muchisimas gracias por su atencion!
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