Breaking SIKE: math and aftermath

Wouter Castryck (KU Leuven)

Latincrypt, Universitad de las Fuerzas Armadas, Quito, 4 October 2023

KU LEUVEN

1. Post-quantum cryptography

Nearly all currently deployed public-key cryptography is based on hardness of:

integer factorization (RSA)

$$n = p \cdot q \quad \longrightarrow \quad p, q ?$$

discrete logarithm problem (ECC)

 $P, dP \in E(\mathbf{F}_q) \longrightarrow d?$

Certificate Fields *.espe.edu.ec Certificate Version Serial Number Certificate Signature Algorithm Issuer **Field Value** PKCS #1 SHA-256 With RSA Encryption

1994: Peter Shor describes an $\begin{cases} O(\log^3 n) \text{ quantum algorithm solving both} \\ O(\log^3 q) \end{cases}$

1. Post-quantum cryptography

Will (universal) quantum computers become real? Mixed opinions.

More consensus: risk that this happens in the nearish future is non-negligible. motivates rapid transition to post-quantum cryptography: long pipeline from proposal to deployment, long-term secrets are under threat now. cryptography that

- runs on classical computers,
- resists quantum computers

2017: NIST initiates "standardization effort" for key encapsulation and signatures

1. Post-quantum cryptography

Main contending hard problems:

finding short vectors in lattices

decoding for random linear codes

finding isogenies between elliptic curves

 $\begin{cases} f_1(s_1, \dots, s_n) = 0\\ \vdots\\ f_m(s_1, \dots, s_n) = 0 \end{cases}$

solving non-linear systems of equations

finding preimages under hash functions

4/24

1. Post-quantum cryptography

2020: Preliminary NIST standards:

LMS (stateful signatures)

XMSS (stateful signatures)

2022: First main NIST standards:

- Kyber (key encapsulation)
- Dilithium (signatures)
- **Falcon** (signatures)
 - **" SPHINCS+** (signatures)

broken few weeks after selection [CD23], [MMP+23], [Rob23]

Moved to extra round of scrutiny:

0100110

0100011

BIKE (key encapsulation)

McEliece (key encapsulation)

HQC (key encapsulation)

SIKE (key encapsulation)

2023: Renewed competition for signatures

Definitio

A homomorphism between two elliptic curves *E* and *E'* over a field *k* is a morphism $\varphi: E \to E'$ such that $\varphi(\infty) = \infty'$.

An **isogeny** is a non-constant homomorphism.

Facts:

- \blacktriangleright isogenies are surjective group homomorphisms with finite kernel (on \overline{k}
 - poi**fasty:** if φ is separable then $\# \ker \varphi = \deg \varphi$
 - every finite subgroup $K \subset E$ is the kernel of a separable isogeny

E

5/2

Definitio

A homomorphism between two elliptic curves *E* and *E'* over a field *k* is a morphism $\varphi: E \to E'$ such that $\varphi(\infty) = \infty'$.

5/2

An **isogeny** is a non-constant homomorphism.

Facts:

- > isogenies are surjective group homomorphisms with finite kernel (on \overline{k} -points),
- ▷ for each isogeny $\varphi: E \to E'$ there is a unique **dual isogeny** $\hat{\varphi}: E' \to E$ such that

Theorem [Tat66] -

Two elliptic curves E, E' over \mathbf{F}_q are isogenous over \mathbf{F}_q if and only if

 $#E(\mathbf{F}_q) = #E'(\mathbf{F}_q).$

The isogeny-finding problem is to find an efficient algorithm with

> input: two elliptic curves *E*, *E'* over \mathbf{F}_q satisfying $\#E(\mathbf{F}_q) = \#E'(\mathbf{F}_q)$

$$\triangleright$$
 output: an \mathbf{F}_q -isogeny $\varphi: E \to E'$

Best known general algorithms: • exponential time complexity,

quantum computers do not seem to help

Remark: in general non-trivial how to **represent** an \mathbf{F}_q -isogeny $\varphi: E \to E'$!

 \succ If deg φ is smooth, can write φ as composition of small-degree isogenies.

default understanding of "outputting an isogenv"

➤ If $E[N] \subset E(\mathbf{F}_q)$ for smooth $N > 2\sqrt{\deg \varphi}$, return

- deg φ ,
- $\varphi(P), \varphi(Q)$ for some basis $P, Q \in E[N]$.

most important by-

product of attack [Rob22a]

Remark: in general non-trivial how to **represent** an \mathbf{F}_a -isogeny $\varphi: E \to E'$...

 \succ If deg φ is smooth, return φ as composition of small-degree isogenies.

default understanding of "returning an isogeny"

most important by product of attack [Rob2 deg φ (for the moment, forget about this)
 φ(P), φ(Q) for some basis P, Q ∈ E[N].

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

8/24

High-level idea:

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

Solution [JDF11]: choose public bases P_A , $Q_A \in E[N_A]$, P_B , $Q_B \in E[N_B]$

8/24

8/24 . Supersingular isogeny Diffie-Hellman (SIDH/SIKE) Solution [JDF11]: choose public bases $P_A, Q_A \in E[N_A], P_B, Q_B \in E[N_B]$ E **Technical remarks:** $= \langle P_B + \mathbf{b} Q_B \rangle$ φ_B $\succ N_A = \deg \varphi_A, N_B = \deg \varphi_B$ must be smooth ➤ why supersingular? makes for hardest isogeny-finding problem, $E_R = E/B$ good control over torsion / base field

not crucial for attack

3. Supersingular isogeny Diffie-Hellman (SIDH/SIKE)

Very important to note: recovering Alice's secret isogeny

9/24

is **not a pure instance** of the isogeny-finding problem!

- Recurring issue in cryptographic design.
- ➤ Torsion point information was already shown to reveal φ_A if $N_B \gg N_A$ [Pet17], [dQKL+20].
- Pure isogeny-finding problem remains hard.

4. Recovering an isogeny from torsion point information on following problem:

$E \longrightarrow E' \qquad N > 2\sqrt{d} \text{ would be the} \\ P, Q \qquad P' = \varphi(P), Q' = \varphi(Q) \qquad \text{optimal assumption} \\ \checkmark$

input:

- $E, E'/\mathbf{F}_q$ connected by an \mathbf{F}_q -isogeny $\boldsymbol{\varphi}$ of known degree d,
- a basis $P, Q \in E[N] \subset E(\mathbf{F}_q)$ for smooth and large enough N,
- $P' = \varphi(P), Q' = \varphi(Q) \in E'[N].$
- \succ output: a representation of φ .

Lemma [JU18]

A degree-*d* isogeny $\varphi: E \to E'$ is uniquely determined by the images of 4d + 1 points.

4. Recovering an isogeny from torsion point information point [Rob23]. Inspiration: [Kan97].

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case:
$$N > d$$

 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$
$$\Phi: E \times E' \longrightarrow E \times E'$$

One checks $\widehat{\Phi} \circ \Phi = \Phi \circ \widehat{\Phi} = N$, i.e., Φ is an (N, N)-isogeny.

4. Recovering an isogeny from torsion point informatiopproach of [Rob23]. Inspiration: [Kan97].

$$E \xrightarrow{\varphi} E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case:
$$N > d$$

 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$

 $\Phi: E \times E'$
One checks $\widehat{\Phi} \circ \Phi = \Phi \circ \widehat{\Phi} = N$, i.e., Φ is an (A)

Proof:

$$\hat{\Phi} \circ \Phi = \begin{pmatrix} a & -\hat{\varphi} \\ \varphi & a \end{pmatrix} \begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix} = \begin{pmatrix} a^2 + \hat{\varphi}\varphi & 0 \\ 0 & a^2 + \hat{\varphi}\varphi \end{pmatrix} = \begin{pmatrix} a^2 + d & 0 \\ 0 & a^2 + d \end{pmatrix}$$

4. Recovering an isogeny from torsion point information point [Rob23]. Inspiration: [Kan97].

$$E \xrightarrow{\varphi} E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case: N > d $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$
$$\Phi: E \times E' \longrightarrow E \times E'$$

One checks $\widehat{\Phi} \circ \Phi = \Phi \circ \widehat{\Phi} = N$, i.e., Φ is an (N, N)-isogeny.

Crucially: we know ker $\Phi = \langle (aP, P'), (aQ, Q') \rangle$.

4. Recovering an isogeny from torsion point informatiopproach of [Rob23]. Inspiration: [Kan97].

$$E \xrightarrow{\varphi} E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case:
$$N > d$$

 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$

 $\Phi : E \times E' \longrightarrow E \times E'$
One checks $\widehat{\Phi} \circ \Phi = \Phi \circ \widehat{\Phi} = N$, i.e., Φ is an (*N*
Crucially: we know ker $\Phi = \langle (aP, P'), (aQ, Q') \rangle$

Proof sketch: $\Phi(aP,P') = \begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix} \begin{pmatrix} aP \\ \varphi(P) \end{pmatrix}$ $= \begin{pmatrix} (a^2 + d)P \\ \infty' \end{pmatrix} = (\infty, \infty')$ and likewise for (aQ,Q').

) / .

E

aP

E'

Consequence:

4. Recovering an isogeny from torsion point informatiopproach of [Rob23]. Inspiration: [Kan97].

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \varphi(P), Q' = \varphi(Q)$$

Special first case:
$$N > d$$

 $N - d = a^2$ is square

Consider:

$$\begin{pmatrix} a & \hat{\varphi} \\ -\varphi & a \end{pmatrix}$$
 $\Phi: E \times E'$

$$\Phi: E \times E'$$

$$E \times E'$$

$$E'$$

$$E \times E'$$

$$E'$$

$$E' \times E'$$

$$E'$$

$$E' \times$$

E

4. Recovering an isogeny from torsion point information Particularly nice case: $N = 2^n$

Then Φ is a composition of (2,2)-isogenies.

$$\ker \Phi_1 = 2^{n-1} \ker \Phi = \langle (2^{n-1}aP, 2^{n-1}P'), (2^{n-1}aQ, 2^{n-1}Q') \rangle$$

 $\ker \Phi_2 = 2^{n-2} \Phi_1(\ker \Phi)$

and so on ...

E'

4. Recovering an isogeny from torsion point information Particularly nice case: $N = 2^n$ Then Φ is a composition of (2,2)-isogenies.

 Φ_1

Richelot isogenies (19th century)

 Φ_2

explicit gluing formulae [HLP00] -

 Φ_{n-1}

 H_{n-1}

 Φ_n

Also explicit: (3,3)-isogenies [BFT14]; otherwise resort to [LR22].

4. Recovering an isogeny from torsion point information φ P, Q E' $P' = \varphi(P), Q' = \varphi(Q)$

Next case:
$$N > d$$

 $N - d = a_1^2 + a_2^2$ is sum of two squares

Approach: same, but use

$$\Phi: E^{2} \times E'^{2} \xrightarrow{q_{1}} a_{2} \xrightarrow{\varphi} 0$$

$$\begin{pmatrix} a_{1} & a_{2} & \widehat{\varphi} & 0 \\ -a_{2} & a_{1} & 0 & \widehat{\varphi} \\ -\varphi & 0 & a_{1} & -a_{2} \\ 0 & -\varphi & a_{2} & a_{1} \end{pmatrix}$$

$$E^{2} \times E'^{2} \xrightarrow{q_{2}} E^{2} \times E'^{2}$$

Now must resort to algorithms from [LR22].

4. Recovering an isogeny from torsion point information φ P, Q E' $P' = \varphi(P), Q' = \varphi(Q)$

Next case: N > d $N - d = a_1^2 + a_2^2 + a_3^2 + a_4^2$ is sum of four squares (Lagrange)

Approach:

work on $E^4 \times E'^4$ and use

$$\begin{pmatrix} a_1 & -a_2 & -a_3 & -a_4 & \hat{\varphi} & 0 & 0 & 0 \\ a_2 & a_1 & a_4 & -a_3 & 0 & \hat{\varphi} & 0 & 0 \\ a_3 & -a_4 & a_1 & a_2 & 0 & 0 & \hat{\varphi} & 0 \\ a_4 & a_3 & -a_2 & a_1 & 0 & 0 & 0 & \hat{\varphi} \\ -\varphi & 0 & 0 & 0 & a_1 & a_2 & a_3 & a_4 \\ 0 & -\varphi & 0 & 0 & -a_2 & a_1 & -a_4 & a_3 \\ 0 & 0 & -\varphi & 0 & -a_3 & a_4 & a_1 & -a_2 \\ 0 & 0 & 0 & -\varphi & -a_4 & -a_3 & a_2 & a_1 \end{pmatrix}$$

4. Recovering an isogeny from torsion point information φ P, Q $P' = \varphi(P), Q' = \varphi(Q)$

Full case:
$$N > \sqrt{d}$$

 $N^2 - d = a^2$ or $a_1^2 + a_2^2$ or $a_1^2 + a_2^2 + a_3^2 + a_4^2$

Approach: proceed as if we know the images of $\frac{1}{N}P$, $\frac{1}{N}Q \in E[N^2]$.

4. Recovering an isogeny from torsion point information φ P, Q E' $P' = \varphi(P), Q' = \varphi(Q)$

Full case:
$$N > \sqrt{d}$$

 $N^2 - d = a^2$ or $a_1^2 + a_2^2$ or $a_1^2 + a_2^2 + a_3^2 + a_4^2$

Approach: proceed **as if we know** the images of $\frac{1}{N}P$, $\frac{1}{N}Q \in E[N^2]$.

4. Recovering an isogeny from torsion point information φ P, Q E' $P' = \varphi(P), Q' = \varphi(Q)$

Full case:
$$N > \sqrt{d}$$

 $N^2 - d = a^2$ or $a_1^2 + a_2^2$ or $a_1^2 + a_2^2 + a_3^2 + a_4^2$

Approach: proceed **as if we know** the images of $\frac{1}{N}P$, $\frac{1}{N}Q \in E[N^2]$.

4. Recovering an isogeny from torsion point information/SIKE in practice:

- prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),
- ▶ good news: $N_A = 2^n$ and $N_B = 3^m$ and either $N_A > N_B$ or $N_B > N_A$,
- ▶ bad news: $|N_A N_B| = a^2$ extremely unlikely,

$$\Phi: E \times E' \longrightarrow E \times E'$$

 $|N_A - N_B| = a_1^2 + a_2^2 \text{ more likely, but$ **can we avoid dimension 4? Yes**for special starting curves*E*!

4. Recovering an isogeny from torsion point information/SIKE in practice:

- ➢ prefer to use (2,2)-isogenies or (3,3)-isogenies (until [LR22] is practical),
- ▶ good news: $N_A = 2^n$ and $N_B = 3^m$ and either $N_A > N_B$ or $N_B > N_A$,
- ▶ bad news: $|N_A N_B| = a^2$ extremely unlikely,

- $\succ |N_A N_B| = a_1^2 + a_2^2$ more likely,
- breaks all security levels of SIKE in seconds on a laptop [OP22], [DK23]

17/24

5. Aftermath

Reality check?

- **SIDH/SIKE** is dead, despite having withstood 11 years of cryptanalysis
- Rainbow [Beu22] was broken 17 years after its proposal
- Quantum threat is being taken very seriously ...
- In the case of integer factorization and discrete logarithm computation)?
- Plea for:
 - not rushing things,
 - hybrid encryption for long-term secrets,
 - adaptable cryptography (quick drop-in replacements).

5. Aftermath

next big thing in isogeny-based crypto

18/24

- Finding isogenies remains hard: schemes like CSIDH, SQISign, ... unaffected.
- Remains very active topic, but knocked back to high-level research phase.
- ➤ There is also good news [Rob22a]: the attack is so efficient that one can now efficiently represent isogeny φ: E → E' by specifying
 - deg φ,
 - $\varphi(P), \varphi(Q)$ for basis $P, Q \in E[N]$ with $N > 2\sqrt{d}$.
- Led to multiple constructive uses: SQISignHD [DLR+23], FESTA [BMP23], SCALLOP-HD [CL23], ...

5. Aftermath

Mathematical updates:

- \succ Recall:

Lemma [JU18] A degree-*d* isogeny $\varphi: E \to E'$ is uniquely determined by images of 4d + 1 points.

At Bristol/Banff workshop 2023: made fully algorithmic.

- > Other applications [Rob22b]:
 - **computing** End(*E*) for ordinary E/\mathbf{F}_q in polytime, given factorization of discriminant,
 - **point counting** on E/\mathbf{F}_{p^n} in time $O(n^2 \cdot \operatorname{poly}(\log p))$,
 - unconditional $\tilde{O}(\ell^3)$ -algorithm for computing ℓ th modular polynomial.

We recall:

$$E \xrightarrow{\varphi_A} E_A = \langle P_A + aQ_A \rangle \qquad E_A = E/A \qquad \text{Alice reveals} \\ \varphi_A(P_B), \varphi_A(Q_B) \\ \text{allows Bob to compute} \\ \varphi_A(B) = \langle \varphi_A(P_B) + b\varphi_A(Q_B) \rangle \\ \text{Observation} \\ \text{It suffices to reveal } \lambda \varphi_A(P_B), \lambda \varphi_A(Q_B) \text{ for some secret } \lambda! \\ E_B = E/B \qquad \text{allows Alice to compute } \varphi_B(A) = \langle \varphi_B(P_A) + a\varphi_B(Q_A) \rangle$$

Leads to following variant:

$$E \longrightarrow E'$$

$$P, Q \qquad P' = \lambda \varphi(P), Q' = \lambda \varphi(Q)$$

➢ input:

• $E, E'/\mathbf{F}_q$ connected by an \mathbf{F}_q -isogeny φ of known degree d,

21/24

- a basis $P, Q \in E[N] \subset E(\mathbf{F}_q)$ for smooth N > d,
- $P' = \lambda \varphi(P), Q' = \lambda \varphi(Q) \in E'[N]$ for some $\lambda \in (\mathbb{Z}/N\mathbb{Z})^*$

 \succ output: a representation of φ .

Weil pairing: $e_N(P',Q') = e_N(\lambda \varphi(P), \lambda \varphi(Q)) = e_N(P,Q)^{\lambda^2 d} \longrightarrow \text{reveals } \lambda^2$

Must assume *N* has many distinct prime factors in order to keep λ secret [FMP23].

If *E* or *E*' carries small non-scalar endomorphism σ : **lollipop attack** [FMP23]

22/24

Observation: write $\Sigma \in (\mathbb{Z}/N\mathbb{Z})^{2 \times 2}$ for matrix of σ with respect to $P, Q \in E[N]$, then

$$(\boldsymbol{\varphi} \circ \boldsymbol{\sigma} \circ \boldsymbol{\widehat{\varphi}}) \begin{pmatrix} P' \\ Q' \end{pmatrix} = d (\boldsymbol{\varphi} \circ \boldsymbol{\sigma}) \begin{pmatrix} \boldsymbol{\lambda} P \\ \boldsymbol{\lambda} Q \end{pmatrix} = d \boldsymbol{\varphi} \Sigma \begin{pmatrix} \boldsymbol{\lambda} P \\ \boldsymbol{\lambda} Q \end{pmatrix} = d \Sigma \begin{pmatrix} P' \\ Q' \end{pmatrix}$$

If $N > \sqrt{\deg(\hat{\varphi} \circ \sigma \circ \varphi)} = d\sqrt{\deg \sigma}$, results in a representation of $\hat{\varphi} \circ \sigma \circ \varphi$. **if cyclic: recover** φ from **this**

this

Similar observation: write Π for matrix of $\hat{\pi}_p$ with respect to $P, Q \in E[N]$, then

$$\begin{pmatrix} \varphi^{(p)} \circ \hat{\varphi} \end{pmatrix} \begin{pmatrix} P' \\ Q' \end{pmatrix} = d \varphi^{(p)} \begin{pmatrix} \lambda P \\ \lambda Q \end{pmatrix} = p^{-1} d \left(\varphi^{(p)} \circ \pi_p \right) \prod \begin{pmatrix} \lambda P \\ \lambda Q \end{pmatrix}$$
$$= p^{-1} d \left(\pi_p \circ \varphi \right) \prod \begin{pmatrix} \lambda P \\ \lambda Q \end{pmatrix} = p^{-1} d \prod \begin{pmatrix} P' \\ Q' \end{pmatrix}$$
if cyclic: recover φ from

6. Analysis of a countermeasure (M-SIDH) Combination: $\varphi^{(p)}$ $E'^{(p)}$ $E'^{(p)}$ π_p

existence of smallishEE' σ may be hard toP φ $P' = \lambda \varphi(P)$ detect (backdoors)Q $Q' = \lambda \varphi(Q)$

Now: write Ω for matrix of $\hat{\pi}_p \circ \sigma$ with respect to $P, Q \in E[N]$, then

$$\begin{pmatrix} \varphi^{(p)} \circ \sigma \circ \hat{\varphi} \end{pmatrix} \begin{pmatrix} P' \\ Q' \end{pmatrix} = d \left(\varphi^{(p)} \circ \sigma \right) \begin{pmatrix} \lambda P \\ \lambda Q \end{pmatrix} = p^{-1} d \left(\varphi^{(p)} \circ \pi_p \right) \Omega \begin{pmatrix} \lambda P \\ \lambda Q \end{pmatrix}$$
$$= p^{-1} d \left(\pi_p \circ \varphi \right) \Omega \begin{pmatrix} \lambda P \\ \lambda Q \end{pmatrix} = p^{-1} d \Omega \begin{pmatrix} P' \\ Q' \end{pmatrix}$$
if cyclic and $N > d \sqrt{\deg \sigma}$: recover φ from this

24/24

Muchísimas gracias por su atención!

References

- [Beu22] Beullens, Breaking Rainbow takes a weekend on a laptop
- [BFT14] Bruin, Flynn, Testa, Descent via (3,3)-isogeny on Jacobians of genus 2 curves
- [BMP23] Basso, Maino, Pope, FESTA: fast encryption from supersingular torsion attacks
- [CD23] Castryck, Decru, An efficient key recovery attack on SIDH
- [CV23] Castryck, Vercauteren, A polynomial time attack on instances of M-SIDH and FESTA
- [DLR+23] Dartois, Leroux, Robert, Wesolowski, SQISignHD: new dimensions in cryptography
- [DK23] Decru, Kunzweiler, Efficient computation of $(3^n, 3^n)$ -isogenies
- [DF+23] De Feo et al, Modular isogeny problems
- [dQKL+20] de Quehen, Kutas, Leonardi, Martindale, Panny, Petit, Stange, Improved torsion-point attacks on SIDH variants
- [FMP23] Fouotsa, Moriya, Petit, M-SIDH and MD-SIDH: countering SIDH attacks by masking information
- [HLP00] Howe, Leprévost, Poonen, Large torsion subgroups of split Jacobians of curves of genus two or three
- [JDF11] Jao, De Feo, Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies
- [JU18] Jao, Urbanik, The problem landscape of SIDH
- [Kan97] Kani, The number of curves of genus two with elliptic differentials
- [LR22] Lubicz, Robert, Fast change of level and applications to isogenies
- [MMP+23] Maino, Martindale, Panny, Pope, Wesolowski, A direct key recovery attack on SIDH
- [OP22] Oudompheng, Pope, A note on reimplementing the Castryck-Decru attack and lessons learned for SageMath
- [Pet17] Petit, Faster algorithms for isogeny problems using torsion point images
- [Rob22a] Robert, Evaluating isogenies in polylogarithmic time
- [Rob22b] Robert, Some applications of higher dimensional isogenies to elliptic curves (overview of results)
- [Rob23] Robert, Breaking SIDH in polynomial time
- [Tat66] Tate, Endomorphisms of abelian varieties over finite fields