Post-Quantum Hybrid KEMTLS Performance in Simulated and Real Network Environments

Alexandre Augusto Giron^{1,2}, João Pedro Adami do Nascimento¹, Ricardo Custódio¹, Lucas Pandolfo Perin³ and Victor Mateu³

¹Computer Security Lab - Federal University of Santa Catarina (UFSC), Florianópolis-SC, Brazil
 ² Federal University of Technology - Parana (UTFPR), Toledo-PR, Brazil
 ³ Technology Innovation Institute (TII), Abu Dhabi, UAE

October 6, 2023

Desig

Evaluation Methodology

Results and Discussion

Conclusions

Introduction

- Network protocols and Transport Layer Security (TLS) 1.3
 - Widely used
 - Rely on Public-Key Cryptography
- Requirements:
 - Security:
 - Authenticated Key Exchange (AKE)
 - But performance is paramount
 - Applications: Internet browsing, Internet-of-Things (IoT), Microservices, etc.

Desig 000 Evaluation Methodology

Results and Discussion

Conclusions

Main Problem

- Public-Key Cryptography (PKC) schemes are insecure under the threat of a Cryptographically Relevant Quantum Computer (CRQC) [4]
 - Shor's algorithm [7] breaks public-key schemes in use today
 - record-now-decrypt-later attacks urge for a solution
- Post-Quantum Cryptography (PQC) transition: adoption of new schemes of cryptography
 - Expected security in both classical and quantum computing paradigms

Design 000 Evaluation Methodology

Results and Discussion

Conclusions

PQC adoption in TLS

- PQTLS (Post-Quantum TLS)
 - Key Exchange: Key Encapsulation Mechanism (KEM)
 - Authentication: Post-quantum digital signatures
- KEMTLS
 - Key Exchange: Key Encapsulation Mechanism
 - Authentication: Key Encapsulation Mechanism

Design 000 Evaluation Methodology

Results and Discussion

Conclusions

PQC adoption challenges

- Performance of PQC
 - Computational cost
 - Network Protocol level: increased sizes
- Confidence in PQC's security
 - Underlying mathematical problem \rightarrow Algorithm \rightarrow Implementation
 - Studying time / algorithm scrutiny time / code verification & analysis time

Design 000 Evaluation Methodology

Results and Discussion

Conclusions

PQC adoption challenges

- Performance of PQC
 - Computational cost
 - Network Protocol level: increased sizes
 - KEMTLS: PQ Key Encapsulation Mechanisms (KEMs) in TLS [6]
- Confidence in PQC's security
 - Underlying mathematical problem \rightarrow Algorithm \rightarrow Implementation
 - Studying time / algorithm scrutiny time / code verification & analysis time

Design 000 Evaluation Methodology

Results and Discussion

Conclusions

PQC adoption challenges

- Performance of PQC
 - Computational cost
 - Network Protocol level: increased sizes
 - KEMTLS: PQ Key Encapsulation Mechanisms (KEMs) in TLS [6]
- Confidence in PQC's security
 - Underlying mathematical problem \rightarrow Algorithm \rightarrow Implementation
 - Studying time / algorithm scrutiny time / code verification & analysis time
 - Hybrid PQC: combining PQC with classical schemes

0000000

PQC adoption challenges

- Performance of PQC
 - Computational cost
 - Network Protocol level: increased sizes
 - KEMTLS: PQ Key Encapsulation Mechanisms (KEMs) in TLS [6]
- Confidence in PQC's security
 - Underlying mathematical problem \rightarrow Algorithm \rightarrow Implementation
 - Studying time / algorithm scrutiny time / code verification & analysis time
 - Hybrid PQC: combining PQC with classical schemes

KEMTLS has not yet been analyzed in the hybrid mode

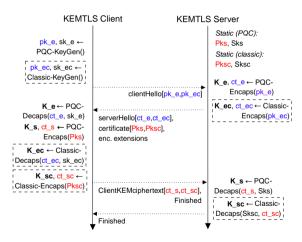
8/26

0000000

Contributions

- 1. A Hybrid KEMTLS design and implementation¹
 - Adding classical cryptography to all of NIST's Round 3 finalist KEM schemes;
- 2. An extensive evaluation of the Hybrid KEMTLS
 - Considering simulated networks and geographical-distant servers;
- 3. A comparison of Hybrids between KEMTLS, KEMTLS-PDK, and PQTLS,
 - Under the same network conditions and security levels.

9/26


¹https://github.com/AAGiron/hybrid-kemtls-tests

Evaluation Methodology

Results and Discussion

Conclusions

Hybrid KEMTLS Handshake

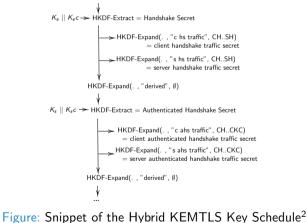
イロト イヨト イヨト イヨト 二日

√

√
√

√
10/26

Design


Evaluation Methodology

Results and Discussion

Conclusions

11/26

Hybrid KEMTLS Key Schedule

²Early Secret and Master Secret were omitted

Design 00● Evaluation Methodology

Results and Discussion

Conclusions

Hybrid KEMTLS Key Schedule

Hybrid KEMTLS incorporates the dualPRF combiner, proposed by Bindel et al. [1]

- Paper: Hybrid Key Encapsulation Mechanisms and Authenticated Key Exchange
- Security is mantained even if one of the KEMs is compromised

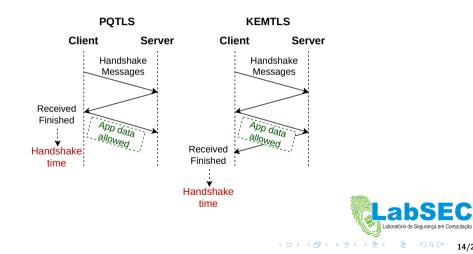
Evaluation Methodology

1. Environment:

- Geographical-distant servers: Central Europe and South America
- Simulated network³:

Parameters: Latency and packet loss probabilities

- 2. Metrics:
 - Handshake completion time
 - Time to send application data
 - Hybrid Penalty
- 3. Implementations:
 - Go Standard Library⁴
 - OQS liboqs-go wrapper [5]


³Using NetEM[3], Linux's network emulator ⁴Adapted from Celi et al. [2]

Evaluation Methodology 00

Evaluation Methodology

Handshake time vs Time to send application data

14/26

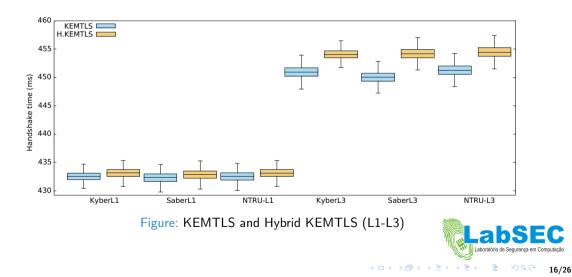
Desig 000 Evaluation Methodology

Results and Discussion

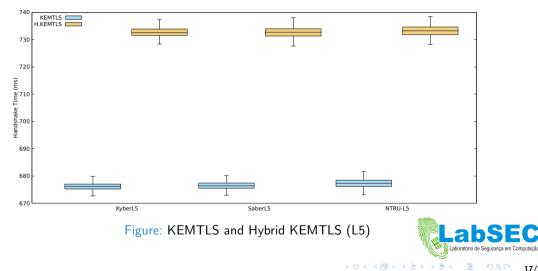
Conclusions

KEMs Computational Cost

Timings for 100 executions


	K	eyGen	E	ncaps	Decaps		
Security Level	Kyber (PQ)	Kyber (Hybrid)	Kyber (PQ)	Kyber (Hybrid)	Kyber (PQ)	Kyber (Hybrid)	
1	0.02 ms	0.04 ms	0.02 ms	0.12 ms	0.01 ms	0.01 ms	
3	0.02 ms	0.39 ms	0.02 ms	0.77 ms	0.02 ms	0.75 ms	
5	0.03 ms	6.5 ms	0.03 ms	12.9 ms	0.02 ms	12.7 ms	

Results and Discussion


Conclusions

Hybrid Penalty in Geographical-distant servers

Results and Discussion 000000

Hybrid Penalty in Geographical-distant servers

17/26

Evaluation Methodology

Results and Discussion

Conclusions

Hybrid Penalty in Simulated Environment

Table: Average Handshake time (in ms) for PQC-Only and Hybrid KEMTLS

Algorithm and	Latency: 1 ms			Latency: 5 ms			Latency: 50 ms			Latency: 150 ms		
Security Level	HS Time	Penalty	St. Dev.	HS Time	Penalty	St. Dev.	HS Time	Penalty	St. Dev.	HS Time	Penalty	St. Dev.
KyberL1	6.0	-	0.4	22.3	-	0.3	202.8	-	0.2	602.9	-	0.2
KyberL1 H.	7.0	1.0	0.4	23.2	0.9	0.3	203.6	0.9	0.3	603.7	0.8	0.4
KyberL3	38.5	-	0.8	54.8	-	0.8	236.3	-	1.0	636.6	-	1.0
KyberL3 H.	46.8	8.3	0.9	62.9	8.1	2.3	243.2	6.9	1.2	643.9	7.3	1.6
KyberL5	63.0	-	0.8	78.4	-	0.8	261.1	-	6.0	659.9	-	1.0
KyberL5 H.	194.6	131.6	2.4	211.4	133.0	3.7	393.0	132.0	4.5	791.6	131.7	3.2

18/26

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の久(?)

Desigr

Evaluation Methodology

Results and Discussion

Conclusions

Hybrid Penalty in Simulated Environment Packet loss probability

Table: Time-to-send-app-data (in ms) considering different packet loss probabilities.

Algorithm and	Packet Loss: 1%		Pack	et Loss: 2%	Pack	et Loss: 3%	Packet Loss: 5%		
Security Level	Median	95% percentile	Median	95% percentile	Median	95% percentile	Median	95% percentile	
KyberL1	1.6	2.9	1.6	3.3	1.6	207.5	1.7	208.3	
KyberL1 H.	2.3	3.4	2.3	7.9	2.3	207.3	2.4	209.4	
KyberL3	34.0	36.1	34.3	39.2	34.8	239.6	34.9	242.0	
KyberL3 H.	39.9	42.1	39.8	43.4	40.3	246.1	40.7	247.2	
KyberL5	58.4	60.9	58.5	63.6	57.6	263.1	58.9	266.3	
KyberL5 H.	162.6	166.8	162.0	167.2	161.0	359.2	162.1	368.0	

Hybrid KEMTLS vs Hybrid PQTLS

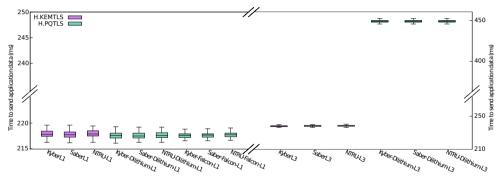
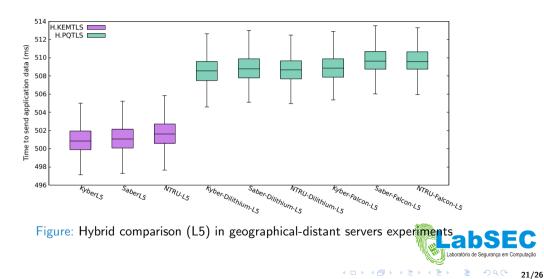


Figure: Hybrid comparison (L1-L3) in geographical-distant servers experiments

<ロト</th>
 ・< 目</th>
 ・< 目</th>
 の< C</th>
 20/26


Desigr

Evaluation Methodology

Results and Discussion

Conclusions

Hybrid KEMTLS vs Hybrid PQTLS

Desig 000 Evaluation Methodology

Results and Discussion

Conclusions •00

Final Remarks

- Small hybrid penalty in KEMTLS in instantiations with lower security level parameters
- Closely matched average timing for NIST's Round 3 finalists schemes
- Network thresholds can greatly affect instantiations with bigger handshake sizes

Evaluation Methodology

Results and Discussion

Conclusions

Thank you for your attention!

Contact:

alexandregiron@utfpr.edu.br joao.pedro.nascimento@grad.ufsc.br

Desig

Evaluation Methodology

Results and Discussion

Conclusions

References I

 Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas Stebila.
 Hybrid key encapsulation mechanisms and authenticated key exchange.

In Jintai Ding and Rainer Steinwandt, editors, *Post-Quantum Cryptography*, pages 206–226, Cham, 2019. Springer International Publishing.

Sofía Celi, Armando Faz-Hernández, Nick Sullivan, Goutam Tamvada, Luke Valenta, Thom Wiggers, Bas Westerbaan, and Christopher A. Wood. Implementing and measuring kemtls.

In Patrick Longa and Carla Ràfols, editors, *Progress in Cryptology – LATINCRYPT 2021*, pages 88–107, Cham, 2021. Springer International Publishing.

24/26

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 - のへで

Desig 000 Evaluation Methodology

Results and Discussion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Conclusions

25/26

References II

Stephen Hemminger.

Linux network emulator.

Online, 2011. https://www.linux.org/docs/man8/tc-netem.html.

Michele Mosca and Marco Piani.

Quantum threat timeline report 2020.

Available at: https://globalriskinstitute.org/publications/ quantum-threat-timeline-report-2020/. Accessed on 20.07.2021., 2020.

- Open Quantum Safe Project.
 - liboqs-go: Go bindings for liboqs.

Available at: https://github.com/open-quantum-safe/liboqs.com/open-quantum

Design 000 Evaluation Methodology

Results and Discussion

Conclusions

References III

Peter Schwabe, Douglas Stebila, and Thom Wiggers. Post-Quantum TLS Without Handshake Signatures, page 1461–1480. Association for Computing Machinery, New York, NY, USA, 2020.

Peter W Shor.

Algorithms for quantum computation: discrete logarithms and factoring.

In *Proceedings 35th annual symposium on foundations of computer science*, pages 124–134, Santa Fe, NM, USA, 1994. IEEE, IEEE.

