
3/10/23

1

MPC for Privacy Preserving
Measurement

Christopher Patton (Cloudflare)
ASCrypto 2023

1

The tech industry needs data to operate

2

MPC for Privacy Preserving Measurement

Use case Data used (by whom)

2

3/10/23

2

The tech industry needs data to operate

3

MPC for Privacy Preserving Measurement

Use case Data used (by whom)

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

3

The tech industry needs data to operate

4

MPC for Privacy Preserving Measurement

Use case Data used (by whom)

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

Web analytics Which features of a website app do users
(dis)like the most (web developer)

4

3/10/23

3

The tech industry needs data to operate

5

MPC for Privacy Preserving Measurement

Use case Data used (by whom)

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

Web analytics Which features of a website app do users
(dis)like the most (web developer)

Connectivity Which servers are are seeing connectivity
issues (network operator)

5

The tech industry needs data to operate

6

MPC for Privacy Preserving Measurement

Use case Data used (by whom)

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

Web analytics Which features of a website app do users
(dis)like the most (web developer)

Connectivity Which servers are are seeing connectivity
issues (network operator)

Ad tech Which ad campaigns are driving revenue
(advertiser)

6

3/10/23

4

The tech industry needs data to operate

7

MPC for Privacy Preserving Measurement

Use case Data used (by whom)

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

Web analytics Which features of a website app do users
(dis)like the most (web developer)

Connectivity Which servers are are seeing connectivity
issues (network operator)

Ad tech Which ad campaigns are driving revenue
(advertiser)

AI "Who" are my users (just about everyone
these days)

7

The tech industry collects more data than it needs

8

MPC for Privacy Preserving Measurement

Use case Data used (by whom) Data collected

Browser telemetry Which websites trigger bugs, distribute
malware, etc. (browser vendor)

Which web pages are users visiting
(and what happens when they do)

Web analytics Which features of a website app do users
(dis)like the most (web developer)

What users are doing on your website

Connectivity Which servers are are seeing connectivity
issues (network operator)

Which servers are users connecting to
(when a connection failure happens)

Ad tech Which ad campaigns are driving revenue
(advertiser)

Cross-site activity (saw an ad on one
site and made a purchase on another)

AI "Who" are my users (just about everyone
these days)

Features (and labels) for (supervised)
learning

8

3/10/23

5

Data minimization

MPC for Privacy Preserving Measurement

measurements

aggregate

Collect what you use and nothing more.

9

"Which users visited example.com
on Thursday"

"How many users visited
example.com on Thursday"

9

The PPM worfiing group at IETF

10

● IETF: "Internet Engineering Task Force"

● Specifies many of the protocols that undergird the
Internet (IP, TCP, DNS, TLS, QUIC, HTTP, …)

● Open standardization process involving industry,
academia, governments, and you!

MPC for Privacy Preserving Measurement

10

3/10/23

6

The PPM worfiing group at IETF

MPC for Privacy Preserving Measurement

● PPM: "Privacy Preserving Measurement"

● 2017: Henry Corrigan-Gibbs, Dan Boneh propose Prio

● 2018: Mozilla experiment with Prio for origin telemetry

● 2020: Google, Apple, and ISRG deploy Prio alongside their COVID exposure notification
apps to provide metrics for health authorities

● 2021: Birds-of-a-Feather session (IETF 112)

● 2022 March: First working group meeting (IETF 113)

● 2022 May: Working group adopts its first draft

datatracker.ietf.org/doc/draft-ietf-ppm-dap

11

11

The PPM worfiing group at IETF

● PPM's goals

● Lower the cost of data minimization

● Engineering effort, financial burden,
energy consumption, …

● Provide a deployment path for emerging
multi-party computation (MPC) techniques

● Progress in engineering dovetails with
progress in cryptography ⇒ we're
building a world of MPC, and we need
your help!

MPC for Privacy Preserving Measurement

Science

12

Engineering

12

https://crypto.stanford.edu/prio/
https://blog.mozilla.org/security/2019/06/06/next-steps-in-privacy-preserving-telemetry-with-prio/
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ENPA_White_Paper.pdf
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/

3/10/23

7

● Computing on secret-shared data
● Security goals

● The tools we have

● The tools we're working on

● Practitioner's view of MPC

● How to contribute

13

MPC for Privacy Preserving Measurement

13

Computing on secret shared data

MPC for Privacy Preserving Measurement

measurement

𝑚1

𝑚2

…

𝑚𝑖

…

𝑚𝑁

Goal: compute the sum
of the measurements

𝑓(𝑚1, …, 𝑚𝑁) = 𝑚1 + … + 𝑚𝑁

14

14

3/10/23

8

Computing on secret shared data

MPC for Privacy Preserving Measurement

measurement

𝑚1

𝑚2

…

𝑚𝑖

…

𝑚𝑁

Goal: compute the sum
of the measurements

𝑓(𝑚1, …, 𝑚𝑁) = 𝑚1 + … + 𝑚𝑁

Secret sharing: Instead of sending 𝑚𝑖 to the
server in the clear, shard 𝑚𝑖 into secret shares
[𝑚𝑖]1, [𝑚𝑖]2 and send each share to a different
server.

15

15

Computing on secret shared data

MPC for Privacy Preserving Measurement

16

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

Each Client shards its
measurement into input
shares

𝑖
Each 𝑟 sampled randomly
from [0..𝑞)

Each input share is
indistinguishable from random

⇒ no information leakage!
Addition modulo 𝑞

16

3/10/23

9

Computing on secret shared data

MPC for Privacy Preserving Measurement

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

[𝑎]1= [𝑚1]1 +…+ [𝑚𝑁]1

First Aggregator sums up
its input shares to get its
aggregate share

𝑟1

17

17

Computing on secret shared data

MPC for Privacy Preserving Measurement

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

[𝑎]1= [𝑚1]1 +…+ [𝑚𝑁]1 [𝑎]2= [𝑚1]2 +…+ [𝑚𝑁]2

Second Aggregator sums
up its input shares to get
its aggregate share

18

18

3/10/23

10

Computing on secret shared data

MPC for Privacy Preserving Measurement

measurement first share second share

𝑚1 [𝑚1]1 = 𝑚1 - 𝑟1 [𝑚1]2 = 𝑟1

𝑚2 [𝑚2]1 = 𝑚2 - 𝑟1 [𝑚2]2 = 𝑟2

… … …

𝑚𝑖 [𝑚𝑖]1 = 𝑚𝑖 - 𝑟𝑖 [𝑚𝑖]2 = 𝑟𝑖

… … …

𝑚𝑁 [𝑚𝑁]1 = 𝑚𝑁 - 𝑟𝑁 [𝑚𝑁]2 = 𝑟𝑁

[𝑎]1= [𝑚1]1 +…+ [𝑚𝑁]1 [𝑎]2= [𝑚1]2 +…+ [𝑚𝑁]2

Collector sums up
aggregate shares to get
aggregate result
[𝑎]1 + [𝑎]2 = 𝑓(𝑚1, …, 𝑚𝑁)

19

19

Computing on secret shared data

MPC for Privacy Preserving Measurement

type measurements aggregate result

Count 1, 1, 0, 1, 0, 1 5

Mean, standard 182, 160, 190, 175, 11
deviation 170, 175

Histogram -7 ⇒ [1, 0, 0]
23 ⇒ [0, 1, 0]
45 ⇒ [0, 1, 0]
59 ⇒ [0, 0, 1]

Linear regression (1, 7), (2, 10),
(3, 9), (4, 11),
…, (5, 10)

● Affine-aggregatable encodings (Prio)

● Many aggregation functions
can be represented as a linear
function of (some encoding of)
the measurements

20

20

https://crypto.stanford.edu/prio/

3/10/23

11

Computing on secret shared data

MPC for Privacy Preserving Measurement

type measurements aggregate result

Count 1, 1, 0, 1, 0, 1 5

Mean, standard 182, 160, 190, 175, 11
deviation 170, 175

Histogram -7 ⇒ [1, 0, 0]
23 ⇒ [0, 1, 0]
45 ⇒ [0, 1, 0]
59 ⇒ [0, 0, 1]

Linear regression (1, 7), (2, 10),
(3, 9), (4, 11),
…, (5, 10)

● Affine-aggregatable encodings (Prio)

● Many aggregation functions
can be represented as a linear
function of (some encoding of)
the measurements

21

This simple approach is not
sufficient: need interaction.

21

Need for interactivity: input validation

Secret sharing of 1 (mod a 128-bit prime):

● 2042029539322534402155356
25362756584204

● 1360794129886850227313301
48005144182006

Secret sharing of
1132410957436894378792879891027759
56821:

● 1706516663212822713104429
85250513842899

● 2828717963433456295157107
77220162880131

MPC for Privacy Preserving Measurement

type measurements aggregate result

Count 1, 1, 0, 1, 0, 999 1002

Mean, standard 182, 160, 190, 340, 368
deviation 170, 999

Histogram -7 ⇒ [1, 0, 0]
23 ⇒ [0, 1, 0]
45 ⇒ [0, 1, 0]
[999, 999, 999]

Linear regression (1, 7), (2, 10),
(3, 9), (4, 11),
…, (999, -999)

22

22

https://crypto.stanford.edu/prio/
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-vdaf

3/10/23

12

Need for interactivity: non-linear computation

● Not all functions we'd like to compute are linear

● Heavy hitters: Among the measurements uploaded by Clients, find the
subset that were uploaded at least 𝑡 times (for some threshold 𝑡)

MPC for Privacy Preserving Measurement

def heavy_hitters(measurements: list[str], t: int) -> set[str]:
hh = defaultdict(lambda: 0)
for measurement in measurements:

hh[measurement] += 1
return set(map(lambda x: x[0], filter(lambda x: x[1] >= t, hh.items())))

Test
assert heavy_hitters(['hi', 'there', 'oh', 'hi'], 2) == {'hi'}

23

23

Data plane

● Each Client shards its measurement into input
shares and sends one share to each
Aggregator

MPC for Privacy Preserving Measurement

input shares

Client Client Client

Aggregator Aggregator

m[1] m[2] m[3]measurements

24

24

3/10/23

13

Data plane

● Each Client shards its measurement into input
shares and sends one share to each
Aggregator

● Aggregators compute aggregate shares, then
send their share to the Collector

MPC for Privacy Preserving Measurement

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]measurements

25

25

Data plane

● Each Client shards its measurement into input
shares and sends one share to each
Aggregator

● Aggregators compute aggregate shares, then
send their share to the Collector

● Collector unshards the aggregate result

MPC for Privacy Preserving Measurement

Client Client Client

Aggregator Aggregator

Collector

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]meaassuurermemeenntsts

aggregate result A

26

26

3/10/23

14

Control plane

● Aggregators interact during aggregation
(input validation)

MPC for Privacy Preserving Measurement

Client Client Client

Aggregator Aggregator

Collector

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]mesausureremmenentsts

aggregate result A

27

27

Control plane

● Aggregators interact during aggregation
(input validation)

● Collector might push information to
Aggregators (heavy hitters ⇒ Poplar)

MPC for Privacy Preserving Measurement

Client Client Client

Aggregator Aggregator

Collector

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]meaassuureremmeenntsts

aggregate result A

28

28

https://eprint.iacr.org/2021/017

3/10/23

15

Control plane

● Aggregators interact during aggregation
(input validation)

● Collector might push information to
Aggregators (heavy hitters ⇒ Poplar)

● Collector might push information to Clients
(federated learning ⇒ dpsa4fl)

MPC for Privacy Preserving Measurement

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

aggregate result A

29

29

Control plane

● Aggregators interact during aggregation
(input validation)

● Collector might push information to
Aggregators (heavy hitters ⇒ Poplar)

● Collector might push information to Clients
(federated learning ⇒ dpsa4fl)

MPC for Privacy Preserving Measurement

Client Client Client

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

aggregate result A

30

When thinking about the control
plane, we need to carefully consider

information leakage!

30

https://eprint.iacr.org/2021/017
https://github.com/dpsa4fl/overview
https://eprint.iacr.org/2021/017
https://github.com/dpsa4fl/overview

3/10/23

16

● Computing on secret-shared data

● Security goals

● The tools we have

● The tools we're working on

● Practitioner's view of MPC

● How to contribute

31

MPC for Privacy Preserving Measurement

31

Privacy

● Threat model

● All Clients and one Aggregator are honest

● Collector and one Aggregator are
controlled by the attacker

● Attacker controls the network (except
transmission of input shares to the honest
Aggregator)

MPC for Privacy Preserving Measurement

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

32

32

3/10/23

17

Privacy

● Threat model

● All Clients and one Aggregator are honest

● Collector and one Aggregator are
controlled by the attacker

● Attacker controls the network (except
transmission of input shares to the honest
Aggregator)

● Security goal

● A computationally-bounded attacker's
view of the protocol execution is efficiently
simulatable given the aggregate result*

MPC for Privacy Preserving Measurement

33*Depending on the scheme there may be additional information leakage.

Def.: For every efficient attacker 𝐴 there is
an efficient simulator 𝑆 such that
View𝐴(𝑚1, …, 𝑚𝑁) and 𝑆(𝑓(𝑚1, …, 𝑚𝑁)) are
computationally indistinguishable.

33

Differential privacy

MPC for Privacy Preserving Measurement

34

● Threat model

● All Clients and one Aggregator are honest

● Collector and one Aggregator are
controlled by the attacker

● Attacker controls the network (except
transmission of input shares to the honest
Aggregator)

● Security goal

● A computationally-bounded attacker's
view of the protocol execution is efficiently
simulatable given the aggregate result*by
a differentially private simulator

*Depending on the scheme there may be additional information leakage.

Def. [DMNS06]: A randomized algorithm is
differentially private (DP) if its output does
not depend "too much" on the value of any
input of its inputs.

[DMNS06] Dwork et al. "Calibrating Noise to Sensitivity in
Private Data Analysis". TCC 2006

34

https://link.springer.com/chapter/10.1007/11681878_14
https://link.springer.com/chapter/10.1007/11681878_14

3/10/23

18

Differential privacy

MPC for Privacy Preserving Measurement

35

Achieve DP by adding carefully calibrated
noise into the aggregate result.

Def. [DMNS06]: A randomized algorithm is
differentially private (DP) if its output does
not depend "too much" on the value of any
input of its inputs.

[DMNS06] Dwork et al. "Calibrating Noise to Sensitivity in
Private Data Analysis". TCC 2006

35

Robustness

● Threat model

● Aggregators and Collector execute the
protocol correctly

● Attacker controls a fraction of Clients
● Security goal

● Collector correctly computes the
aggregate result of honest Clients'
measurements

MPC for Privacy Preserving Measurement

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

36

36

https://link.springer.com/chapter/10.1007/11681878_14
https://link.springer.com/chapter/10.1007/11681878_14

3/10/23

19

Different threat model for different security goals

● Privacy: malicious Aggregator and
Collector (one Aggregator is
semi-honest)

● Robustness: malicious Clients
(Aggregators and Collector are
semi-honest)

● Malicious Aggregator can
change the result (break
robustness), but won't violate
privacy by doing so

MPC for Privacy Preserving Measurement

37

37

● Computing on secret-shared data

● Security goals

● The tools we have
● The tools we're working on

● Practitioner's view of MPC

● How to contribute

38

MPC for Privacy Preserving Measurement

38

3/10/23

20

Fully linear proofs [BBCG+19]

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 39

MPC for Privacy Preserving Measurement

● Conventional zero-knowledge proofs:

● Prover publishes commitment to 𝑋 and proof 𝛱 that 𝑋 is "valid"
● Verifier uses 𝛱 to check validity of the committed value

● Fully linear proofs (FLPs):

● Same idea except the data is secret-shared instead of committed

39

Fully linear proofs [BBCG+19]

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 40

MPC for Privacy Preserving Measurement

Syntax:
𝛱 := Prove(𝑋) // proof generation
𝑉 := Query(𝑋, 𝛱; 𝑞𝑟) // query generation
𝑑 := Decide(𝑉) // decision

Full linearity: Query(𝑋, 𝛱; 𝑞𝑟) is equal to:

● Split 𝛱, X into shares [𝑋]𝑖 , [𝛱]𝑖 for all 𝑖
● [𝑉]𝑖 := Query([𝑋]𝑖 , [𝛱]𝑖; 𝑞𝑟) for all 𝑖
● Return [𝑉]1 + … + [𝑉]𝑠

40

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

3/10/23

21

Fully linear proofs [BBCG+19]

MPC for Privacy Preserving Measurement

Aggregator Aggregator

[𝑉]2

Client

[𝑋]1 , [𝛱]1 [𝑋]2 , [𝛱]2

[𝑉]1

𝑑 𝑑

𝑋

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 41

Syntax:
𝛱 := Prove(𝑋) // proof generation
𝑉 := Query(𝑋, 𝛱; 𝑞𝑟) // query generation
𝑑 := Decide(𝑉) // decision

Full linearity: Query(𝑋, 𝛱; 𝑞𝑟) is equal to:

● Split 𝛱, X into shares [𝑋]𝑖 , [𝛱]𝑖 for all 𝑖
● [𝑉]𝑖 := Query([𝑋]𝑖 , [𝛱]𝑖; 𝑞𝑟) for all 𝑖
● Return [𝑉]1 + … + [𝑉]𝑠

Prio*

*Slightly different from the original paper [CGB17], but reflects the draft specification.

[CGB17] Boneh and Corrigan-Gibbs. "Prio: Private, Robust, and Scalable Computation of Aggregate." NSDI 2017.

41

Fully linear proofs [BBCG+19]

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 42

MPC for Privacy Preserving Measurement

Honest verifier zero-finowledge: There is a
simulator 𝑆 whose output is statistically close
to the following experiment (for all 𝑋):

● 𝛱 := Prove(𝑋)
● Choose 𝑞𝑟 at random
● 𝑉 := Query(𝑋, 𝛱; 𝑞𝑟)
● Return (𝑉, 𝑞𝑟)

Soundness: For all invalid inputs 𝑋 ∉ 𝓛 and
proofs 𝛱, the probability that the following
experiment outputs valid is small:

● Choose 𝑞𝑟 at random
● 𝑉 := Query(𝑋, 𝛱; 𝑞𝑟)
● Return Decide(𝑉)

Syntax:
𝛱 := Prove(𝑋) // proof generation
𝑉 := Query(𝑋, 𝛱; 𝑞𝑟) // query generation
𝑑 := Decide(𝑉) // decision

Full linearity: Query(𝑋, 𝛱; 𝑞𝑟) is equal to:

● Split 𝛱, X into shares [𝑋]𝑖 , [𝛱]𝑖 for all 𝑖
● [𝑉]𝑖 := Query([𝑋]𝑖 , [𝛱]𝑖; 𝑞𝑟) for all 𝑖
● Return [𝑉]1 + … + [𝑉]𝑠

42

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://crypto.stanford.edu/prio/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/
https://crypto.stanford.edu/prio/
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

3/10/23

22

Fully linear proofs [BBCG+19]

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 43

MPC for Privacy Preserving Measurement

● Constructing FLPs

● Define validity via a circuit C: If 𝑋 ∈ 𝓛, then C(𝑋)=0;
but if 𝑋 ∉ 𝓛, then C(𝑋)≠0

43

Fully linear proofs [BBCG+19]

MPC for Privacy Preserving Measurement

● Constructing FLPs

● Define validity via a circuit C: If 𝑋 ∈ 𝓛, then C(𝑋)=0;
but if 𝑋 ∉ 𝓛, then C(𝑋)≠0

def counter(x: F) -> F:
return x * (x-1)

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 44

44

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

3/10/23

23

Fully linear proofs [BBCG+19]

MPC for Privacy Preserving Measurement

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

def counter(x: F) -> F:
return x * (x-1)

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

def histogram(x: list[F], r: list[F]) -> F:
rng_chk = sum(r[0]**i * x[i] * (x[i]-1) for i in range(len(x)))
sum_chk = sum(x) * (sum(x)-1)
return rng_chk + r[1]*sum_chk

Test
assert histogram([0, 0, 0, 0], rand_vec(2)) == 0
assert histogram([0, 0, 1, 0], rand_vec(2)) == 0
assert histogram([0, 0, 999, 0], rand_vec(2)) != 0
assert histogram([1, 0, 1, 0], rand_vec(2)) != 0

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 45

45

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

x * (x-1)
def counter(x: F) -> F:

return

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

def histogram(x: list[F], r: list[F]) -> F:
rng_chk = sum(r[0]**i * x[i] * (x[i]-1) for i in range(len(x)))
sum_chk = sum(x) * (sum(x)-1)
return r[1] * rng_chk + r[1]**2 * sum_chk

Test
assert histogram([0, 0, 0, 0], rand_vec(2)) == 0
assert histogram([0, 0, 1, 0], rand_vec(2)) == 0
assert histogram([0, 0, 999, 0], rand_vec(2)) != 0
assert histogram([1, 0, 1, 0], rand_vec(2)) != 0

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 46

Fully linear proofs [BBCG+19]

MPC for Privacy Preserving Measurement

Problem: circuits usually
involve non-linear

operations ⇒ can't
compute these on secret

shared data

46

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

3/10/23

24

Fully linear proofs [BBCG+19]

MPC for Privacy Preserving Measurement

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

● Proof 𝛱 encodes a polynomial 𝑝 for which 𝑝(𝑖) is the
output of the 𝑖-th non-linear operation

𝑝(0)
def counter(x: F) -> F:

return

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

𝑝(i)

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 47

𝑝(len(x))

def histogram(x: list[F], r: list[F]) -> F:
rng_chk = sum(r[0]**i * for i in range(len(x)))
sum_chk =
return r[1] * rng_chk + r[1]**2 * sum_chk

Test
assert histogram([0, 0, 0, 0], rand_vec(2)) == 0
assert histogram([0, 0, 1, 0], rand_vec(2)) == 0
assert histogram([0, 0, 999, 0], rand_vec(2)) != 0
assert histogram([1, 0, 1, 0], rand_vec(2)) != 0

Observation:
Polynomial evaluation

is linear!

47

Fully linear proofs [BBCG+19]

MPC for Privacy Preserving Measurement

● Constructing FLPs

● Define validity via a (randomized) circuit C: If 𝑋 ∈
𝓛, then C(𝑋)=0; but if 𝑋 ∉ 𝓛, then C(𝑋)≠0 (w.h.p.)

● Proof 𝛱 encodes a polynomial 𝑝 for which 𝑝(𝑖) is the
output of the 𝑖-th non-linear operation

● Verifier(s):

𝑝(0)

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019. 48

def counter(x: F) -> F:
return

Test
assert counter(0) == 0
assert counter(1) == 0
assert counter(999) != 0

● (Each) Verifier evaluates (its share of) C(𝑋) using (its share of) 𝑝

● Run probabilistic test to check that 𝑝 is well-formed (using 𝑞𝑟)

48

https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188

3/10/23

25

Distributed point functions [GI14]

MPC for Privacy Preserving Measurement

49

● Point function: 𝑓(𝛼)=𝛽 and 𝑓(𝑋)=0 for all 𝑋≠𝛼

● Distributed point function: secret-sharing of a point function

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝑋)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝑋) for all 𝑋, 𝑖

● Use case: aggregate by label

● Measurement is a pair (𝛼, 𝛽) where 𝛼 is the Client's label (user agent,
geolocation, etc.) and 𝛽 is the Client's contribution to the aggregate
result

def agg_by_label(measurements: list[tuple[str, int]], x: str) -> int:
return sum(map(lambda m: m[1], filter(lambda m: m[0] == x, measurements)))

Test
assert agg_by_label([('EC', 1), ('US', 13), ('EC', 99)], 'EC') == 100

[GI14] Gilboa and Ishai. "Distributed Point Functions and their Applications." EUROCRYPT 2014.

49

Incremental distributed point functions [BBCG+21]

MPC for Privacy Preserving Measurement

ia.cr/2021/017

50[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

● Incremental point function: 𝑓(𝐼)=𝛽 for any prefix 𝐼 of 𝛼 and 𝑓(𝐼)=0 otherwise

● Incremental DPF: secret-sharing of an incremental point function

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

● Use case: 𝑡-heavy-hitters (Poplar)

● Client: let 𝛼 be the measurement (a bit
string) and let 𝛽=1

● Aggregators count how many begin with
a given prefix 𝐼

● Traverse the prefix tree of the
measurement to the leaves with
prefix count at least 𝑡

50

https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf
https://www.iacr.org/archive/eurocrypt2014/84410245/84410245.pdf
https://eprint.iacr.org/2021/017
https://ia.cr/2021/017
https://eprint.iacr.org/2021/017

3/10/23

26

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

51[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

51

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

52[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

52

https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017

3/10/23

27

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

0000 0001 0010 0011

0100 0101 0110 0111

1000 1001 1010 1011

1100 1101 1110 1111

53[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

53

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

0 / 12

54[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

1 / 14

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

54

https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017

3/10/23

28

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

00 / 6

01 / 6

10 / 7

11 / 7

55[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

55

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

000 / 4 001 / 2

010 / 5 011 / 1

100 / 3 101 / 4

110 / 6 111 / 2

56[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

56

https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017

3/10/23

29

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

000 / 4

010 / 5

101 / 4

110 / 6

57[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

Candidate prefixes: 000, 001, 010, 011, 100, 101, 110, 111 / threshold: 4

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

57

Poplar [BBCG+21]

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

0000 / 2 0001 / 2

0100 / 1 0101 / 4

1010 / 3 1011 / 1

1100 / 4 1101 / 0

58[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

Candidate prefixes: 0000, 0001, 0100, 0101, 1010, 1011, 1100, 1101 / threshold: 4

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

58

https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017

3/10/23

30

Poplar [BBCG+21]

59[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

MPC for Privacy Preserving Measurement

E.g.: From which regions are users experiencing
high latency?

0101 / 4

1100 / 4

Candidate prefixes: 0000, 0001, 0100, 0101, 1010, 1011, 1100, 1101 / threshold: 4

Syntax:

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● [𝑓(𝐼)]𝑖 = Eval(𝑃, 𝐾𝑖, 𝐼) for all 𝐼, 𝑖

59

Constructing IDPFs

MPC for Privacy Preserving Measurement

● 𝑃, 𝐾1 and 𝑃, 𝐾2 are concise representations of binary trees: 𝛼-path
nodes are secret shares of 𝛽; and off-path nodes are equal

1259624838

5719 22939 32019 23487

0

00 01 𝛼=10

1

11

5294124838

5719 22939 33518 23487

0

60[BBCG+21] Boneh et al. "Lightweight Techniques for Private Heavy Hitters." IEEE S&P 2021.

00 01 𝛼=10

1

11

60

https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017
https://eprint.iacr.org/2021/017

3/10/23

31

● Computing on secret-shared data

● Security goals

● The tools we have

● The tools we're worfiing on

● Practitioner's view of MPC

● How to contribute

61

MPC for Privacy Preserving Measurement

61

Verifiable Incremental distributed point functions

MPC for Privacy Preserving Measurement

62

● IDPF with verifiability of one-hotness

● (𝑃, 𝐾1, 𝐾2) := Gen(𝛼,𝛽)
● ([𝑓(𝐼1), …, 𝑓(𝐼𝑝)]𝑖 , 𝜋𝑖) = Eval(𝑃, 𝐾𝑖, 𝐈) for all 𝐈=(𝐼1, …, 𝐼𝑝), 𝑖

● 𝜋1= 𝜋2 implies 𝑓(𝐼1), …, 𝑓(𝐼𝑝) is a one-hot vector

● Also need to verify that the non-zero value is in-range

● [MST23] solve this in their protocol (PLASMA) for
the special case that 𝛽=1; what about the general
case?

Vector 𝐕=(𝑉1, 𝑉2, …) is one-hot if at
most value 𝑉𝑖 is non-zero, e.g.:

00000𝛽0000, 0000000000

1259624838

5719 22939 32019 23487

0

00 01 𝛼=10

1

11

[MST23] Mouris et al. "PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries." ePrint 2023/080.

62

https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2023/080

3/10/23

32

Function secret sharing

MPC for Privacy Preserving Measurement

63

● FSS [BGI16]: split 𝑓 into shares such that [𝑓(𝑋)]1, …, [𝑓(𝑋)]𝑠 can be evaluated for any 𝑋

● Possible to construct efficient schemes for specific classes of functions (e.g.,
(incremental) point functions, decision trees, …)

● Q1: Efficient and generic approach for transforming privacy-only FSS to
verifiable FSS?

● Arithmetic sfietching [BBCG+23] (generalizes sketching scheme from
Poplar for achieving robustness with IDPFs)

[BGI16] Boyle et al. "Function Secret Sharing: Improvements and Extensions." CCS 2016.
[BBCG+23] Boneh et al. "Arithmetic Sketching." CRYPTO 2023.

63

Boolean-to-arithmetic conversion

● Common use case for Prio: aggregating vectors of counters

● Prio+ [ABJ+22]: Clients send XOR shares of each counter;
Aggregators interact to convert the shares into a finite field ⇒ huge
improvement for Client

● Q2: Private boolean-to-arithmetic conversion in the presence of a
malicious server? (Authors seem to only claim semi-honest privacy.)

MPC for Privacy Preserving Measurement

64[ABJ+22] Addanki et al. "Prio+: Privacy Preserving Aggregate Statistics via Boolean Shares." SCN 2022.

64

https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2023/1012
https://eprint.iacr.org/2018/707
https://eprint.iacr.org/2023/1012
https://eprint.iacr.org/2021/576
https://eprint.iacr.org/2021/576

3/10/23

33

Sorting

● Sort rows of a secret-shared database by a key

● Use case: last-touch attribution (IPA)

● For each purchase, find the most
recent ad impression that can be
linked to it ⇒ figure out which ad
impressions are most effective

● 3-party, honest majority protocol of
[CHI+19] is being evaluated.

● Q3: Is a 2-party protocol possible (with
our requirements)?

MPC for Privacy Preserving Measurement

65

match key time source trigger

89b0 12:45 c54c 0000

2d14 13:10 c54c 0000

89b0 14:44 3d32 0000

89b0 13:37 0000 153e

match key time source trigger

89b0 14:44 3d32 0000

89b0 13:37 0000 153e

89b0 12:45 c54c 0000

2d14 13:10 c54c 0000

[CHI+19] Chida et al. "An Efficient Secure Three-Party Sorting Protocol with an Honest Majority". ePrint 2019/695.

65

Standardized DP mechanisms

● Bridging the DP and MPC communities:

● Secret-sharing the noise [EIKN22, KKL+23]

● Algorithms for sampling from non-uniform distributions (e.g., discrete Gaussian [CKS20])

● Collective experience with privacy/utility trade-off

MPC for Privacy Preserving Measurement

66

[EIKN21] Eriguchi et al. "Efficient Noise Generation Protocols for Differentially Private Multiparty Computation." FC 2021.
[KKL+23] Keeler et al. "DPrio: Efficient Differential Privacy with High Utility for Prio." PETS 2023.
[CKS20] Canonne et al. "The Discrete Gaussian for Differential Privacy." NuerIPS 2020.

66

https://github.com/patcg-individual-drafts/ipa/blob/main/IPA-End-to-End.md
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2019/695
https://eprint.iacr.org/2022/1391
https://petsymposium.org/popets/2023/popets-2023-0086.php
https://arxiv.org/abs/2004.00010
https://eprint.iacr.org/2022/1391
https://petsymposium.org/popets/2023/popets-2023-0086.php
https://arxiv.org/abs/2004.00010

3/10/23

34

● Computing on secret-shared data

● Security goals

● The tools we have

● The tools we're worfiing on

● Practitioner's view of MPC
● How to contribute

MPC for Privacy Preserving Measurement

67

67

Number of parties

MPC for Privacy Preserving Measurement

68

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

● More parties ⇒ increased complexity

● 2 parties is ideal: fits neatly into client-server
communication pattern

● 3 parties is probably workable

● ≥4 parties is untested (for PPM)

● Redundancy doesn't seem super useful (so far)

● In theory, Prio allows any number of
Aggregators

● Simple way to get honest-majority
robustness: re-run 2-party protocol with
each pair of three parties [BBCG+19, MST23]

[BBCG+19] Boneh et al. "Zero-Knowledge Proofs on Secret-Shared Data via Fully Linear PCPs." CRYPTO 2019.
[MST23] Mouris et al. "PLASMA: Private, Lightweight Aggregated Statistics against Malicious Adversaries." ePrint 2023/080.

68

https://crypto.stanford.edu/prio/
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2023/080
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2023/080

3/10/23

35

Number of rounds

69

● Carefully consider how much state is required (and for how long)

● In the client-server setting:

● 1-round MPC (e.g., FLP verification) might be stateless for the server!

● For 𝑟≥2, the protocol is necessarily stateful ⇒ difference between 𝑟-round and
(𝑟+1)-round MPC is negligible

MPC for Privacy Preserving Measurement

69

Malicious versus semi-honest security

● This dichotomy is an artifact of the textbook
definition of "secure computation"

● We would like malicious security, but not at any
cost (whether more parties, more rounds,
higher bandwidth, or more CPU is required
needs to be considered)

● Set aside secure computation and think about
the attacker's incentives:

● We must have privacy against malicious
Aggregators

● We don't always need robustness against
malicious Aggregators

MPC for Privacy Preserving Measurement

Client Client Client

A

Aggregator Aggregator

Collector

m[1] m[2] m[3]

aggregate result

aggregate shares

input shares

Client Client Client

Aggregator Aggregator

Collector

measurements

70

70

3/10/23

36

● Computing on secret-shared data

● Security goals

● The tools we have

● The tools we're worfiing on

● Practitioner's view of MPC

● How to contribute

71

MPC for Privacy Preserving Measurement

71

How to contribute

● Join the mailing list: https://www.ietf.org/mailman/listinfo/Ppm

● Join ppm in the IETF slack: https://ietf.slack.com/

● Drafts:

● DAP: https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/

● VDAF: https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

● Individual drafts in progress for DP, dealing with Sybil attacks, other approaches, …

72

MPC for Privacy Preserving Measurement

72

https://www.ietf.org/mailman/listinfo/Ppm
https://ietf.slack.com/
https://datatracker.ietf.org/doc/draft-ietf-ppm-dap/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

3/10/23

37

Who am I?

MPC for Privacy Preserving Measurement

● PhD from University of Florida (under Tom Shrimpton) in 2020

● Practice-oriented provable security [Rog09]: bridging
provable and real-world security of cryptographic
protocols

● Joined Cloudflare in 2020

● Cryptography engineering: design, analysis,
specification, implementation, and deployment of
cryptographic protocols

● I am not an MPC expert!
● Please interrupt with questions, or to correct the record

cjpatton.net

73

73

Fully linear proofs [BBCG+19]

MPC for Privacy Preserving Measurement

74

● Prio*

● Client on input 𝑋:

● 𝛱 := Prove(𝑋) // proof generation
● Split 𝛱, X into shares [𝛱]𝑖 , [𝑋]𝑖
● Send [𝑋]𝑖 , [𝛱]𝑖 to Aggregator 𝑖

● Aggregators sample 𝑞𝑟 at random

● Aggregator 𝑖 on [𝑋]𝑖 , [𝛱]𝑖:

● [𝑉]𝑖 := Query([𝑋]𝑖 , [𝛱]𝑖; 𝑞𝑟)
● Broadcast [𝑉]𝑖

● Aggregator 𝑖 on [𝑉]1 ,…, [𝑉]𝑁:

● Return 𝑑 := Decide([𝑉]1 + … + [𝑉]𝑠)

*Slightly different from the original paper [CGB17], but reflects the draft specification.

Aggregator Aggregator

[𝑉]2

Client

[𝑋]1 , [𝛱]1 [𝑋]2 , [𝛱]2

[𝑉]1

𝑑 𝑑

𝑋

74

https://www.cs.ucdavis.edu/~rogaway/papers/cc.pdf
http://cjpatton.net/
https://eprint.iacr.org/2019/188
https://crypto.stanford.edu/prio/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-vdaf/

3/10/23

38

Differential privacy

MPC for Privacy Preserving Measurement

75

● Threat model

● All Clients and one Aggregator are honest

● Collector and one Aggregator are
controlled by the attacker

● Attacker controls the network (except
transmission of input shares to the honest
Aggregator)

● Security goal

● A computationally-bounded attacker's
view of the protocol execution is efficiently
simulatable given the aggregate result*by
a differentially private simulator

*Depending on the scheme there may be additional information leakage.

Def. [DMNS06]: A randomized algorithm is
differentially private (DP) if its output does
not depend "too much" on the value of any
input of its inputs.

Simulator gets the measurements as
input and outputs a simulation of the
attacker's view: it is -DP if for all and
neighboring :

Achieve DP by adding carefully
calibrated noise into the

aggregate result.

75

https://link.springer.com/chapter/10.1007/11681878_14

