On Fully-Secure Honest Majority MPC without n^2 Round Overhead

Latincrypt'23. Read at ia.cr/2023/1204

Daniel Escudero¹ Serge Fehr² October 5, 2023

¹J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE

²CWI, Amsterdam

Introduction

- Multiple parties P_1, \ldots, P_n have inputs x_1, \ldots, x_n
- They want to compute a function $y = f(x_1, \ldots, x_n)$
- Only leak the **result** *y* and nothing else about x_1, \ldots, x_n
- Security should hold even in an **adversary** controls *t* out of the *n* parties

Honest majority

We assume that t < n/2:

- The adversary corrupts a minority of the parties
- The **majority** of parties are **honest**

Why studying this setting?

- \cdot We can achieve information-theoretic security
- ightarrow More precisely, **statistical** security
- We can achieve guaranteed output delivery (G.O.D.)
- \rightarrow Meaning the honest parties get correct output regardless of the corrupt parties' behavior

We model the function f as an arithmetic circuit over a finite field $\mathbb F$

Communication complexity

Number of field elements communicated in total

Number of rounds

Number of **sequential** message exchanges

[BTH06; BFO12; GSZ20] show that parties can compute an arithmetic circuit *C* with G.O.D. (aka **full security**) and:

- Communication complexity O(n|C|)
- Round complexity $O(depth(C) + n^2)$

OUR FOCUS: Improving the round complexity to O(depth(C)).

Efficiency:

- For small depth(*C*), the term *n*² adds many rounds
- In **distributed** settings, **large** number of rounds **hurts performance**

We can get O(depth(C)) rounds in other related settings!

- $\cdot t < n/3$ and perfect security
- So why not here too?

The t < n/3 setting

For t < n/3 it is known that we can get **perfect security**, O(depth(C)) rounds, and **G.O.D.**, with either these properties:

- Increasing to $\Omega(n^2|C|)$ communication.^a
- Or, retaining O(n|C|) communication but assuming correlated randomness

Can we get a similar result for t < n/2 and statistical security?

^{*a*}[AAPP23] showed **very recently** that we can actually get O(n|C|).

Our result

We present an MPC for **honest majority** with the following features:

- Statistical security
- Full security (G.O.D.)
- O(n|C|) communication
- O(depth(C)) rounds
- Assumes correlated randomness

Ongoing work

```
O(depth(C)) rounds with O(n^2|C|) communication without correlated randomness
```

Challenges with existing approaches

A successful framework for building protocols with full security is called **dispute control** [BTH06]:

- Place "checkpoints" during the protocol execution
- Perform a fault detection step at each checkpoint
- If a fault is detected, find a **pair** of parties in **dispute**
- **Re-run** from the previous **checkpoint**, ensuring the same dispute **cannot** occur again

re-runs = # pairs
$$\approx n^2$$

 n^2 extra rounds!

We must avoid re-runs!

Let \mathbb{F} be a finite field.

Linear secret-sharing

For $x \in \mathbb{F}$, we denote $[x] = (x_1, \dots, x_n)$ a vector of **shares** of *x*, so that

- Any set of t shares hides the secret x
- Any set of t + 1 shares determines the secret x
- The scheme is **linear**: $\llbracket x \rrbracket \pm \llbracket y \rrbracket = \llbracket x \pm y \rrbracket$

FACT

If the parties have certain correlated randomness then MPC reduces to **reconstructing** certain secretshared values at every multiplication gate

FACT

If the parties have certain correlated randomness then MPC reduces to **reconstructing** certain secretshared values at every multiplication gate

This is exploited to get O(depth(C)) rounds for t < n/3 by:

- Designing a robust reconstruction protocol
- Ensuring it requires O(n) total communication

For t < n/3, use error correction

- Ensures incorrect shares can be filtered out and removed
- For t < n/2, use **robust secret-sharing** [RB89]
- Shares can be endowed with **additional information** that ensures incorrect shares can be filtered out and removed

Reconstructing a secret **naively** takes n^2 communication:

• Every party send their share to every other party

Alternatively, send shares to **one party** who reconstructs and sends result back

- $\cdot 2n = O(n)$ messages
- What if this party decides not to announce anything?
- How to check that the announced reconstruction is correct?

"Multiple kings" idea [DN07]

Assume t + 1 secrets $[s_0], \ldots, [s_t]$ will be reconstructed simultaneously.

For i = 1, ..., n:

- Compute $\llbracket r_j \rrbracket = \sum_{\ell=0}^t j^\ell \cdot \llbracket s_\ell \rrbracket$
- Reconstruct $[[r_j]]$ towards party P_j
- P_j sends r_j to all parties
- Parties recover (s_0, \ldots, s_t) from (r_1, \ldots, r_n) . Communication: $O(\frac{n^2}{t+1}) = O(n)$ per secret

Why does it work?

 (r_1, \ldots, r_n) can be seen as a "shares" themselves!

What about the t < n/2 setting?

Recall: We use robust secret-sharing.

• Each share has some **extra information** needed to rule out incorrect shares

Previous approach does **not** work

- Compute $\llbracket r_j \rrbracket = \sum_{\ell=0}^t j^\ell \cdot \llbracket s_\ell \rrbracket$
- Reconstruct $[[r_j]]$ towards party P_j
- P_j sends r_j to all parties
- Parties **recover** (s_0, \ldots, s_t) from (r_1, \ldots, r_n) .

Cannot **rule out** incorrect "shares" from $(r_1, ..., r_n)$ since they **lack** the "extra information"!

Our solution

We design a **novel** robust secret-sharing scheme that allows P_j to **learn** the "extra information" to send alongside r_j , so that the parties can **recover** (s_0, \ldots, s_t) from (r_1, \ldots, r_n)

More precisely

Our scheme allows **robustly** reconstructing (t + 1)n secrets with $O(n^3)$ communication

• $O(\frac{n^3}{(t+1)n}) = O(\frac{n^3}{n^2}) = O(n)$ per secret

Our scheme can be used to obtain MPC with

- \cdot Statistical and full security
- · O(n|C|) communication
- O(depthC) rounds
- Assuming the parties have correlated randomness

Technical details

Sit tight (or look at your phone)

We define the sharing $\llbracket x \rrbracket$ for a secret $x \in \mathbb{F}$ to consist of

- · Sharing polynomial $F_0(X) \in \mathbb{F}_{\leq t}[X]$ subject to $F_0(0) = x$,
- · Randomizer polynomials $\textit{F}_1(X),\ldots,\textit{F}_t(X) \in \mathbb{F}_{\leq t}[X]$
- · Key polynomials $A_0(Y), \ldots, A_t(Y) \in \mathbb{F}_{\leq t}[Y]$, and
- $\boldsymbol{\cdot}$ Checking polynomial $\textit{C}(X,Y) \in \mathbb{F}_{\leq t, \leq t}[X,Y]$ given by

 $C(\mathbf{X},\mathbf{Y}) = F_0(\mathbf{X}) \cdot A_0(\mathbf{Y}) + F_1(\mathbf{X}) \cdot A_1(\mathbf{Y}) + \dots + F_t(\mathbf{X}) \cdot A_t(\mathbf{Y}).$ (1)

 $C(\mathbf{X},\mathbf{Y}) = F_0(\mathbf{X}) \cdot A_0(\mathbf{Y}) + F_1(\mathbf{X}) \cdot A_1(\mathbf{Y}) + \dots + F_t(\mathbf{X}) \cdot A_t(\mathbf{Y})$

Every party *P_i* is given

$$\begin{cases} F(i) := (F_0(i), F_1(i), \dots, F_t(i)), \\ A(i) := (A_0(i), A_1(i), \dots, A_t(i)), \\ C(X, i). \end{cases}$$

Basic **reconstruction**:

- Every P_i sends $(F_0(i), F_1(i), \ldots, F_t(i))$
- Every receiver P_j verifies that

 $C(i,j) = F_0(i) \cdot A_0(j) + F_1(i) \cdot A_1(j) + \cdots + F_t(i) \cdot A_t(j)$

Input: $(t + 1) \cdot n$ secrets $(\llbracket x^{(m,\ell)} \rrbracket)$, for $\ell \in \{0, \ldots, t\}$ and $m \in \{0, \ldots, n-1\}$, each given by polynomials $(A(Y), F^{(m,\ell)}(X), C^{(m,\ell)}(X, Y))$.

Output: Each party P_k learns all $(x^{(m,\ell)})_{m,\ell}$.

Assumption: A functionality \mathcal{F}_{coin} that distributes a random value *r* to all parties upon request.

For each $m \in \{0, ..., n-1\}$, reconstruct $\sum_{\ell=0}^{t} j^{\ell} \cdot [x^{(m,\ell)}]$ towards P_j

- This is the "multiple king" idea from [DN07]
- It is too expensive if everyone sends **all** of the "extra information" for each $m \in \{0, ..., n-1\}$
- <u>Solution</u>: *Compress* this extra information

Goal: Each P_j learns $\{F_0^{(m)}(0,j) := \sum_{\ell=0}^t j^\ell F^{(m,\ell)}(0)\}_{m=0}^{n-1}$:

- For $m \in \{0, ..., n-1\}$, each P_i computes $F^{(m)}(i, Z) = \sum_{\ell=0}^{t} Z^{\ell} F^{(m,\ell)}(i)$, and P_i sends $F_0^{(m)}(i,j)$ to each P_j .
- The parties call \mathcal{F}_{coin} to obtain $\xi \in \mathbb{F}$.
- For $\ell \in \{0, ..., t\}$ and $h \in [t]$, each P_i computes $F_h(i, \mathbf{Z}) = \sum_{m=0}^{n-1} \xi^m F_h^{(m)}(i, \mathbf{Z})$, and sends to each P_j the vector $(F_1(i, j), ..., F_t(i, j))$.

• Each P_j computes, for $i \in [n]$, $F_0(i,j) = \sum_{m=0}^{n-1} \xi^m F_0^{(m)}(i,j)$, and upon receiving $(F_1(i,j), \ldots, F_t(i,j))$ from P_i , P_j checks that

$$F(i,j) \cdot A(j) = \sum_{m=0}^{n-1} \sum_{\ell=0}^{t} \xi^{m} j^{\ell} \cdot C^{(m,\ell)}(i,j).$$

• Let $\mathcal{I} \subseteq [n]$ be the set of indexes *i*'s for which the check above did not fail. P_j interpolates $F_0^{(m)}(0,j)$ from $\{F_0^{(m)}(i,j)\}_{i \in \mathcal{I}}$

Step 2 (intuition)

For $m \in \{0, ..., n-1\}$, each P_j forwards the reconstructed $F_0^{(m)}(0,j) = \sum_{\ell=0}^t j^{\ell} F^{(m,\ell)}(0)$ to all parties

- This is again as in the "multiple king" idea, but how can each receiver P_k verify the correctness of $\{F_0^{(m)}(0,j)\}_{j\in[n]}$?
- <u>Solution</u>: P_j can also interpolate $(F_1(0, j), \ldots, F_t(0, j))$ from $\{F(i, j)\}_{i \in \mathcal{I}}$, so P_j can relay these to the parties
- Problem: "Compressor" ξ is already known before P_j sends $F_0^{(m)}(0, j)$, P_j can cheat.
- <u>Solution++:</u> Sample a new "compressor" and send new compressed extra information

- For $m \in \{0, ..., n-1\}$, each P_j forwards the reconstructed $F_0^{(m)}(0, j) = \sum_{\ell=0}^t j^\ell F^{(m,\ell)}(0)$ to all parties
- The parties call \mathcal{F}_{coin} to obtain $\omega \in \mathbb{F}$.
- Each P_i computes $F'_h(i, \mathbf{Z}) = \sum_{m=0}^{n-1} \omega^m F_h^{(m)}(i, \mathbf{Z})$ for $h \in [t]$. Then P_i sends $(F'_1(i, j), \dots, F'_t(i, j))$ to each P_j .

• Each P_j computes, for $i \in [n]$, $F'_0(i,j) = \sum_{m=0}^{n-1} \omega^m F_0^{(m)}(i,j)$, and upon receiving $(F'_1(i,j), \dots, F'_t(i,j))$ from P_i , P_j checks that

$$F'(i,j) \cdot \mathbf{A}(j) = \sum_{m=0}^{n-1} \sum_{\ell=0}^{t} \omega^m j^\ell \cdot C^{(m,\ell)}(i,j).$$

• Let $\mathcal{I} \subseteq [n]$ be the set of indexes *i*'s for which the check above did not fail. P_j interpolates $F'(\mathbf{X}, j)$ from $(F'(i, j))_{i \in \mathcal{I}}$.

- For each P_j , each P_k receives the "extra information" $(F'_1(0, j), \dots, F'_t(0, j))$
- Each P_k uses this to verify the received values $\{F_0^{(m)}(0,j)\}_{j\in[n]}$, for $m \in \{0,\ldots,n-1\}$
- Each P_k uses the verified "shares" to reconstruct $F_0^{(m)}(0, \mathbb{Z})$, recovering all $x^{(m,\ell)}$'s

- Each P_j sends $(F'_1(0,j),\ldots,F'_t(0,j))$ to each P_k .
- Upon receiving these values, each P_k computes $F'_0(0,j) = \sum_{m=0}^{n-1} \omega^m \cdot F^{(m)}(0,j)$ and checks that

$$F'(0,j) \cdot A(j) = \sum_{m=0}^{n-1} \sum_{\ell=0}^{t} \omega^{m} j^{\ell} \cdot C^{(m,\ell)}(0,j),$$

for each $j \in [n]$

• Let $\mathcal{J} \subseteq [n]$ be the set of indexes *j*'s for which the check above did not fail. For each $m \in \{0, \ldots, n-1\}$, P_k interpolates $F_0^{(m)}(0, \mathbb{Z}) = \sum_{\ell=0}^t x^{(m,\ell)} \mathbb{Z}^\ell$ from $(F_0^{(m)}(0, j))_{j \in \mathcal{J}}$, and outputs $(x^{(m,\ell)})_{m,\ell}$.

Homework 1

Verify that the total communication is $O(n^3)$

• So communication per secret is $O(\frac{n^3}{(t+1)n}) = O(n)$

Homework 2

Read Theorem 1 in the paper for security proof

- We get statistically secure MPC for honest majority with G.O.D., O(depth(C)) rounds and O(n|C|) communication, in the preprocessing model
- We do this via a **novel robust secret-sharing** scheme with **efficient** "authentication forwarding"
- See paper for (more) details: ia.cr/2023/1204

Thank you!

References i

[AAPP23] I. Abraham et al. "Detect, Pack and Batch: Perfectly-Secure MPC with Linear Communication and Constant Expected Time". In: 2023.

- [BFO12] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. "Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority". In: 2012.
- [BTH06] Z. Beerliová-Trubíniová and M. Hirt. "Efficient Multi-party Computation with Dispute Control". In: 2006.
- [DN07] I. Damgård and J. B. Nielsen. "Scalable and Unconditionally Secure Multiparty Computation". In: 2007.

- [GSZ20] V. Goyal, Y. Song, and C. Zhu. "Guaranteed Output Delivery Comes Free in Honest Majority MPC". In: 2020.
- [RB89] T. Rabin and M. Ben-Or. "Verifiable Secret Sharing and Multiparty Protocols with Honest Majority (Extended Abstract)". In: 1989.