On Fully-Secure Honest Majority MPC without n^{2} Round Overhead
 Latincrypt'23. Read at ia.cr/2023/1204

Daniel Escudero ${ }^{1}$ Serge Fehr ${ }^{2}$
October 5, 2023
${ }^{1}$ J.P. Morgan AI Research \& J.P. Morgan AlgoCRYPT CoE
${ }^{2}$ CWI, Amsterdam

Introduction

Secure Multiparty Computation

- Multiple parties P_{1}, \ldots, P_{n} have inputs x_{1}, \ldots, x_{n}
- They want to compute a function $y=f\left(x_{1}, \ldots, x_{n}\right)$
- Only leak the result y and nothing else about x_{1}, \ldots, x_{n}
- Security should hold even in an adversary controls t out of the n parties

Honest majority

We assume that $t<n / 2$:

- The adversary corrupts a minority of the parties
- The majority of parties are honest

Why studying this setting?

- We can achieve information-theoretic security
\rightarrow More precisely, statistical security
- We can achieve guaranteed output delivery (G.O.D.)
\rightarrow Meaning the honest parties get correct output regardless of the corrupt parties' behavior

Metrics of interest

We model the function f as an arithmetic circuit over a finite field \mathbb{F}

Communication complexity

Number of field elements communicated in total

Number of rounds
Number of sequential message exchanges

Known results

[BTH06; BFO12; GSZ20] show that parties can compute an arithmetic circuit C with G.O.D. (aka full security) and:

- Communication complexity $O(n|C|)$
- Round complexity O (depth $\left.(C)+n^{2}\right)$

OUR FOCUS: Improving the round complexity to O(depth(C)).

Motivation

Efficiency:

- For small depth(C), the term n^{2} adds many rounds
- In distributed settings, large number of rounds hurts performance

We can get $O($ depth $(C))$ rounds in other related settings!

$\cdot t<n / 3$ and perfect security

- So why not here too?

The $t<n / 3$ setting

For $t<n / 3$ it is known that we can get perfect security, O(depth(C)) rounds, and G.O.D., with either these properties:

- Increasing to $\Omega\left(n^{2}|C|\right)$ communication. ${ }^{a}$
- Or, retaining $O(n|C|)$ communication but assuming correlated randomness

Can we get a similar result for $t<n / 2$ and statistical security?

[^0]
Our result

We present an MPC for honest majority with the following features:

- Statistical security
- Full security (G.O.D.)
- $O(n|C|)$ communication
- O(depth(C)) rounds
- Assumes correlated randomness

Ongoing work

$O($ depth $(C))$ rounds with $O\left(n^{2}|C|\right)$ communication without correlated randomness

Challenges with existing approaches

A successful framework for building protocols with full security is called dispute control [BTH06]:

- Place "checkpoints" during the protocol execution
- Perform a fault detection step at each checkpoint
- If a fault is detected, find a pair of parties in dispute
- Re-run from the previous checkpoint, ensuring the same dispute cannot occur again

$$
\begin{gathered}
\# \text { re-runs }=\# \text { pairs } \approx n^{2} \\
n^{2} \text { extra rounds! }
\end{gathered}
$$

We must avoid re-runs!

Secret-sharing-based MPC

Let \mathbb{F} be a finite field.

Linear secret-sharing

For $x \in \mathbb{F}$, we denote $\llbracket x \rrbracket=\left(x_{1}, \ldots, x_{n}\right)$ a vector of shares of x, so that

- Any set of t shares hides the secret x
- Any set of $t+1$ shares determines the secret x
- The scheme is linear: $\llbracket x \rrbracket \pm \llbracket y \rrbracket=\llbracket x \pm y \rrbracket$

FACT

If the parties have certain correlated randomness then MPC reduces to reconstructing certain secretshared values at every multiplication gate

Approach in $t<n / 3$ using correlated randomness

FACT

If the parties have certain correlated randomness then MPC reduces to reconstructing certain secretshared values at every multiplication gate

This is exploited to get $O($ depth(C)) rounds for $t<n / 3$ by:

- Designing a robust reconstruction protocol
- Ensuring it requires $O(n)$ total communication

Robust reconstruction

For $t<n / 3$, use error correction

- Ensures incorrect shares can be filtered out and removed
For $t<n / 2$, use robust secret-sharing [RB89]
- Shares can be endowed with additional information that ensures incorrect shares can be filtered out and removed

Reconstruction with $O(n)$ communication

Reconstructing a secret naively takes n^{2} communication:

- Every party send their share to every other party

Alternatively, send shares to one party who reconstructs and sends result back

- $2 n=O(n)$ messages
-What if this party decides not to announce anything?
- How to check that the announced reconstruction is correct?

"Multiple kings" idea [DN07]

Assume $t+1$ secrets $\llbracket s_{0} \rrbracket, \ldots, \llbracket s_{t} \rrbracket$ will be reconstructed simultaneously.

For $i=1, \ldots, n$:

- Compute $\llbracket r_{j} \rrbracket=\sum_{\ell=0}^{t} j^{\ell} \cdot \llbracket s_{\ell} \rrbracket$
- Reconstruct $\llbracket r_{j} \rrbracket$ towards party P_{j}
- P_{j} sends r_{j} to all parties
- Parties recover $\left(s_{0}, \ldots, s_{t}\right)$ from $\left(r_{1}, \ldots, r_{n}\right)$.

Communication: $O\left(\frac{n^{2}}{t+1}\right)=O(n)$ per secret

Why does it work?

$\left(r_{1}, \ldots, r_{n}\right)$ can be seen as a "shares" themselves!

What about the $t<n / 2$ setting?

Recall: We use robust secret-sharing.

- Each share has some extra information needed to rule out incorrect shares

Previous approach does not work

- Compute $\llbracket r_{j} \rrbracket=\sum_{\ell=0}^{t} j^{\ell} \cdot \llbracket s_{\ell} \rrbracket$
- Reconstruct $\llbracket r_{j} \rrbracket$ towards party P_{j}
- P_{j} sends r_{j} to all parties
- Parties recover $\left(s_{0}, \ldots, s_{t}\right)$ from $\left(r_{1}, \ldots, r_{n}\right)$.

Cannot rule out incorrect "shares" from $\left(r_{1}, \ldots, r_{n}\right)$ since they lack the "extra information"!

Our solution

We design a novel robust secret-sharing scheme that allows P_{j} to learn the "extra information" to send alongside r_{j}, so that the parties can recover $\left(s_{0}, \ldots, s_{t}\right)$ from $\left(r_{1}, \ldots, r_{n}\right)$

More precisely

Our scheme allows robustly reconstructing $(t+1) n$ secrets with $O\left(n^{3}\right)$ communication

- $O\left(\frac{n^{3}}{(t+1) n}\right)=O\left(\frac{n^{3}}{n^{2}}\right)=O(n)$ per secret

Our scheme can be used to obtain MPC with

- Statistical and full security
- $O(n|C|)$ communication
- O(depthC) rounds
- Assuming the parties have correlated randomness

Technical details

Sit tight (or look at your phone)

We define the sharing $\llbracket x \rrbracket$ for a secret $x \in \mathbb{F}$ to consist of

- Sharing polynomial $F_{0}(X) \in \mathbb{F}_{\leq t}[\mathrm{X}]$ subject to $F_{0}(0)=x$,
- Randomizer polynomials $F_{1}(X), \ldots, F_{t}(X) \in \mathbb{F}_{\leq t}[X]$
- Key polynomials $A_{0}(Y), \ldots, A_{t}(Y) \in \mathbb{F}_{\leq t}[Y]$, and
- Checking polynomial $C(X, Y) \in \mathbb{F}_{\leq t, \leq t}[\mathrm{X}, \mathrm{Y}]$ given by

$$
\begin{equation*}
C(X, Y)=F_{0}(X) \cdot A_{0}(Y)+F_{1}(X) \cdot A_{1}(Y)+\cdots+F_{t}(X) \cdot A_{t}(Y) . \tag{1}
\end{equation*}
$$

$C(X, Y)=F_{0}(X) \cdot A_{0}(Y)+F_{1}(X) \cdot A_{1}(Y)+\cdots+F_{t}(X) \cdot A_{t}(Y)$
Every party P_{i} is given

$$
\left\{\begin{array}{l}
F(i):=\left(F_{0}(i), F_{1}(i), \ldots, F_{t}(i)\right), \\
A(i):=\left(A_{0}(i), A_{1}(i), \ldots, A_{t}(i)\right), \\
C(X, i) .
\end{array}\right.
$$

Basic reconstruction:

- Every P_{i} sends $\left(F_{0}(i), F_{1}(i), \ldots, F_{t}(i)\right)$
- Every receiver P_{j} verifies that

$$
C(i, j)=F_{0}(i) \cdot A_{0}(j)+F_{1}(i) \cdot A_{1}(j)+\cdots+F_{t}(i) \cdot A_{t}(j)
$$

$O(n)$ reconstruction

Input: $(t+1) \cdot n$ secrets $\left(\llbracket x^{(m, \ell)} \rrbracket\right)$, for $\ell \in\{0, \ldots, t\}$ and $m \in\{0, \ldots, n-1\}$, each given by polynomials $\left(A(Y), F^{(m, \ell)}(X), C^{(m, \ell)}(X, Y)\right)$.

Output: Each party P_{k} learns all $\left(x^{(m, \ell)}\right)_{m, \ell}$.
Assumption: A functionality $\mathcal{F}_{\text {coin }}$ that distributes a random value r to all parties upon request.

Step 1 (intuition)

For each $m \in\{0, \ldots, n-1\}$, reconstruct $\sum_{\ell=0}^{t} j^{\ell} \cdot \llbracket x^{(m, \ell)} \rrbracket$ towards P_{j}
-This is the "multiple king" idea from [DN07]

- It is too expensive if everyone sends all of the "extra information" for each $m \in\{0, \ldots, n-1\}$
- Solution: Compress this extra information

Step 1 (details I)

Goal: Each P_{j} learns $\left\{F_{0}^{(m)}(0, j):=\sum_{\ell=0}^{t} j^{\ell} F^{(m, \ell)}(0)\right\}_{m=0}^{n-1}$:

- For $m \in\{0, \ldots, n-1\}$, each P_{i} computes $F^{(m)}(i, Z)=\sum_{\ell=0}^{t} Z^{\ell} F^{(m, \ell)}(i)$, and P_{i} sends $F_{0}^{(m)}(i, j)$ to each P_{j}.
- The parties call $\mathcal{F}_{\text {coin }}$ to obtain $\xi \in \mathbb{F}$.
- For $\ell \in\{0, \ldots, t\}$ and $h \in[t]$, each P_{i} computes $F_{h}(i, Z)=\sum_{m=0}^{n-1} \xi^{m} F_{h}^{(m)}(i, Z)$, and sends to each P_{j} the $\operatorname{vector}\left(F_{1}(i, j), \ldots, F_{t}(i, j)\right)$.

Step 1 (details II)

- Each P_{j} computes, for $i \in[n], F_{0}(i, j)=\sum_{m=0}^{n-1} \xi^{m} F_{0}^{(m)}(i, j)$, and upon receiving $\left(F_{1}(i, j), \ldots, F_{t}(i, j)\right)$ from P_{i}, P_{j} checks that

$$
F(i, j) \cdot A(j)=\sum_{m=0}^{n-1} \sum_{\ell=0}^{t} \xi^{m} j^{\ell} \cdot C^{(m, \ell)}(i, j)
$$

- Let $\mathcal{I} \subseteq[n]$ be the set of indexes i 's for which the check above did not fail. P_{j} interpolates $F_{0}^{(m)}(0, j)$ from $\left\{F_{0}^{(m)}(i, j)\right\}_{i \in \mathcal{I}}$

Step 2 (intuition)

For $m \in\{0, \ldots, n-1\}$, each P_{j} forwards the reconstructed $F_{0}^{(m)}(0, j)=\sum_{\ell=0}^{t} j^{\ell \ell} F^{(m, \ell)}(0)$ to all parties

- This is again as in the "multiple king" idea, but how can each receiver P_{k} verify the correctness of $\left\{F_{0}^{(m)}(0, j)\right\}_{j \in[n]}$?
- Solution: P_{j} can also interpolate $\left(F_{1}(0, j), \ldots, F_{t}(0, j)\right)$ from $\{F(i, j)\}_{i \in \mathcal{I}}$, so P_{j} can relay these to the parties
- Problem: "Compressor" ξ is already known before P_{j} sends $F_{0}^{(m)}(0, j), P_{j}$ can cheat.
- Solution++: Sample a new "compressor" and send new compressed extra information

Step 2 (details I)

- For $m \in\{0, \ldots, n-1\}$, each P_{j} forwards the reconstructed $F_{0}^{(m)}(0, j)=\sum_{\ell=0}^{t} j^{\ell} F^{(m, \ell)}(0)$ to all parties
- The parties call $\mathcal{F}_{\text {coin }}$ to obtain $\omega \in \mathbb{F}$.
- Each P_{i} computes $F_{h}^{\prime}(i, Z)=\sum_{m=0}^{n-1} \omega^{m} F_{h}^{(m)}(i, Z)$ for $h \in[t]$. Then P_{i} sends $\left(F_{1}^{\prime}(i, j), \ldots, F_{t}^{\prime}(i, j)\right)$ to each P_{j}.

Step 2 (details II)

- Each P_{j} computes, for $i \in[n], F_{0}^{\prime}(i, j)=\sum_{m=0}^{n-1} \omega^{m} F_{0}^{(m)}(i, j)$, and upon receiving $\left(F_{1}^{\prime}(i, j), \ldots, F_{t}^{\prime}(i, j)\right)$ from P_{i}, P_{j} checks that

$$
F^{\prime}(i, j) \cdot A(j)=\sum_{m=0}^{n-1} \sum_{\ell=0}^{t} \omega^{m} j^{\ell} \cdot C^{(m, \ell)}(i, j)
$$

- Let $\mathcal{I} \subseteq[n]$ be the set of indexes i's for which the check above did not fail. P_{j} interpolates $F^{\prime}(X, j)$ from $\left(F^{\prime}(i, j)\right)_{i \in \mathcal{I}}$.

Step 3 (intuition)

- For each P_{j}, each P_{k} receives the "extra information" $\left(F_{1}^{\prime}(0, j), \ldots, F_{t}^{\prime}(0, j)\right)$
- Each P_{k} uses this to verify the received values $\left\{F_{0}^{(m)}(0, j)\right\}_{j \in[n]}$, for $m \in\{0, \ldots, n-1\}$
- Each P_{k} uses the verified "shares" to reconstruct $F_{0}^{(m)}(0, Z)$, recovering all $x^{(m, \ell)^{\prime} s}$

Step 3 (details I)

- Each P_{j} sends $\left(F_{1}^{\prime}(0, j), \ldots, F_{t}^{\prime}(0, j)\right)$ to each P_{k}.
- Upon receiving these values, each P_{k} computes $F_{0}^{\prime}(0, j)=\sum_{m=0}^{n-1} \omega^{m} \cdot F^{(m)}(0, j)$ and checks that

$$
F^{\prime}(0, j) \cdot A(j)=\sum_{m=0}^{n-1} \sum_{\ell=0}^{t} \omega^{m} j^{\ell} \cdot C^{(m, \ell)}(0, j)
$$

for each $j \in[n]$

- Let $\mathcal{J} \subseteq[n]$ be the set of indexes j 's for which the check above did not fail. For each $m \in\{0, \ldots, n-1\}, P_{k}$ interpolates $F_{0}^{(m)}(0, Z)=\sum_{\ell=0}^{t} x^{(m, \ell)} Z^{\ell}$ from $\left(F_{0}^{(m)}(0, j)\right)_{j \in \mathcal{J}}$, and outputs $\left(x^{(m, \ell)}\right)_{m, \ell}$.

Homework 1

Verify that the total communication is $O\left(n^{3}\right)$

- So communication per secret is $O\left(\frac{n^{3}}{(t+1) n}\right)=O(n)$

Homework 2

Read Theorem 1 in the paper for security proof

- We get statistically secure MPC for honest majority with G.O.D., O(depth(C)) rounds and $O(n|C|)$ communication, in the preprocessing model
- We do this via a novel robust secret-sharing scheme with efficient "authentication forwarding"
- See paper for (more) details: ia.cr/2023/1204

Thank you!

References i

[AAPP23] I. Abraham et al. "Detect, Pack and Batch: Perfectly-Secure MPC with Linear Communication and Constant Expected Time". In: 2023.
[BFO12] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. "Near-Linear Unconditionally-Secure Multiparty Computation with a Dishonest Minority". In: 2012.
[BTH06] Z. Beerliová-Trubíniová and M. Hirt. "Efficient Multi-party Computation with Dispute Control". In: 2006.
[DN07] I. Damgård and J. B. Nielsen. "Scalable and Unconditionally Secure Multiparty Computation". In: 2007.

References ii

[GSZ20] V. Goyal, Y. Song, and C. Zhu. "Guaranteed Output Delivery Comes Free in Honest Majority MPC". In: 2020.
[RB89] T. Rabin and M. Ben-Or. "Verifiable Secret Sharing and Multiparty Protocols with Honest Majority (Extended Abstract)". In: 1989.

[^0]: ${ }^{a}$ [AAPP23] showed very recently that we can actually get $O(n|C|)$.

