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Introduction



Secure Multiparty Computation

- Multiple parties P, ..., P, have inputs x1, ..., X,
- They want to compute a function y = f(x1,...,Xn)
- Only leak the result y and nothing else about x, ..., Xn

- Security should hold even in an adversary controls t out
of the n parties



Honest majority

We assume thatt < n/2:
- The adversary corrupts a minority of the parties

- The majority of parties are honest

Why studying this setting?

- We can achieve information-theoretic security

— More precisely, statistical security
- We can achieve guaranteed output delivery (G.0.D.)

— Meaning the honest parties get correct output
regardless of the corrupt parties’ behavior




Metrics of interest

We model the function f as an arithmetic circuit over a finite
field F

Communication complexity

Number of field elements communicated in total

Number of rounds

Number of sequential message exchanges




Known results

[BTHO6; BFO12; GSZ20] show that parties can compute an
arithmetic circuit C with G.0.D. (aka full security) and:

- Communication complexity O(n|C|)

- Round complexity O(depth(C) + n?)

OUR Focus: Improving the round complexity to
O(depth(Q)).



Efficiency:
- For small depth(C), the term n? adds many rounds

- In distributed settings, large number of rounds hurts
performance

We can get O(depth(C)) rounds in other related settings!
- t < n/3 and perfect security

- So why not here too?



The t < n/3 setting

Fort < n/3itis known that we can get perfect security,
O(depth(C)) rounds, and G.0.D., with either these
properties:

- Increasing to Q(n?|C|) communication.

- Or, retaining O(n|C|) communication but assuming
correlated randomness

Can we get a similar result for t < n/2 and statistical
security?

“[AAPP23] showed very recently that we can actually get O(n|C]).



We present an MPC for honest majority with the following
features:

- Statistical security

- Full security (G.0.D.)

- O(n|C|) communication
- O(depth(C)) rounds

- Assumes correlated randomness

Ongoing work

O(depth(C)) rounds with O(n?|C|) communication
without correlated randomness




Challenges with existing approaches



A successful framework for building protocols with full
security is called dispute control [BTH06]:

- Place “checkpoints” during the protocol execution
- Perform a fault detection step at each checkpoint
- If a fault is detected, find a pair of parties in dispute

- Re-run from the previous checkpoint, ensuring the same
dispute cannot occur again

# re-runs = # pairs ~ n?
n? extra rounds!

We must avoid re-runs!



Secret-sharing-based MPC

Let F be a finite field.

Linear secret-sharing

For x € F, we denote [x] = (x1,...,Xn) @ vector of
shares of x, so that

- Any set of t shares hides the secret x
- Any set of t + 1 shares determines the secret x

- The scheme is linear: [x] £ [y] = [x £ V]




If the parties have certain correlated randomness
then MPC reduces to reconstructing certain secret-
shared values at every multiplication gate
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Approach int < n/3 using correlated randomness

If the parties have certain correlated randomness
then MPC reduces to reconstructing certain secret-
shared values at every multiplication gate

This is exploited to get O(depth(C)) rounds for t < n/3 by:
- Designing a robust reconstruction protocol

- Ensuring it requires O(n) total communication
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Robust reconstruction

For t < n/3, use error correction

- Ensures incorrect shares can be filtered out and
removed

Fort < n/2, use robust secret-sharing [RB89]

- Shares can be endowed with additional information
that ensures incorrect shares can be filtered out and
removed
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Reconstruction with O(n) communication

Reconstructing a secret naively takes n? communication:
- Every party send their share to every other party

Alternatively, send shares to one party who reconstructs
and sends result back

- 2n = O(n) messages
- What if this party decides not to announce anything?

- How to check that the announced reconstruction is
correct?
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“Multiple kings” idea [DNO7]

Assume t + 1 secrets [so] ,- - -, [St] will be reconstructed
simultaneously.

Fori=1,...,n:

- Compute [rj] = S5_o/" - [se]

- Reconstruct [r] towards party P;

- P; sends r; to all parties

- Parties recover (So,...,St) from (ry,...,rn).

Communication: O(%) = O(n) per secret

Why does it work?

(r1,...,rn) can be seen as a “shares” themselves!
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What about the t < n/2 setting?

Recall: We use robust secret-sharing.

- Each share has some extra information needed to rule
out incorrect shares

Previous approach does not work
- Compute [r;] = S5_o /¢ - [se]

+ Reconstruct [r;] towards party P;
* P; sends r; to all parties

- Parties recover (So,...,St) from (r1,...,rn).

Cannot rule out incorrect “shares” from (ry,...,rn)
since they lack the “extra information”!
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Our solution



We design a novel robust secret-sharing scheme that
allows P; to learn the “extra information” to send

alongside rj, so that the parties can recover (so, ..., St)
from (ry,...,rn)



More precisely

Our scheme allows robustly reconstructing (t + 1)n
secrets with O(n®) communication

0 O(ﬁ) = O(g—i) = O(n) per secret

Our scheme can be used to obtain MPC with
- Statistical and full security

- O(n|C|) communication

- O(depthC) rounds

- Assuming the parties have correlated randomness
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Technical details
Sit tight (or look at your phone)



We define the sharing [x] for a secret x € F to consist of

- Sharing polynomial Fy(X) € F<¢[X] subject to Fo(0) = X,
- Randomizer polynomials F1(X),. .., F(X) € F<¢[X]

- Key polynomials Ag(Y), ..., A(Y) € F<[Y], and

- Checking polynomial C(X,Y) € F<; <¢[X, Y] given by

C(X,Y) = Fo(X)-Ao(Y)+F1(X)-Ar(Y)+- - ~+Fe(X)-A(Y). (1)



C(X,Y) = Fo(X) - Ao(Y) + Fa(X) - A1(Y) 4+ - - - + Fe(X) - Ae(Y)

Every party P; is given

F(i) :== (Fo(i), F1(i), - - -, Fe(1)),

Basic reconstruction:
- Every P; sends (Fo(1), F1(i), ..., Fe(1))

- Every receiver P; verifies that

C(1,j) = Fo(i) - Ao(J) + F1(i) - A1(Jj) + - - - + Fe (i) - Ac())



O(n) reconstruction

Input: (t +1) - n secrets ([x(MA]), for £ € {0,...,t} and
m € {0,...,n — 1}, each given by polynomials
(A(Y), FIMO(X), C(MO(X, V).

Output: Each party Py learns all (x(M9),, ,.

Assumption: A functionality F.., that distributes a
random value r to all parties upon request.
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Step 1 (intuition)

For each m € {0,...,n — 1}, reconstruct y_, j - [x(M9]
towards P;

- This is the “multiple king” idea from [DN07]

- It is too expensive if everyone sends all of the “extra
information” for each m € {0,...,n —1}

- Solution: Compress this extra information
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Step 1 (details 1)

n—1.

Goal: Each P; learns {F{™(0,) := S35 jAFMO(0)}1—:
- Form € {0,...,n — 1}, each P; computes
Fm(i,Z) = Sy ZPFMO(i), and P; sends F{™ (i, ) to
each P;.
- The parties call F,, to obtain £ € F.

- For ¢ € {0,...,t} and h € [t], each P; computes
Fn(i,Z) = 320, ngﬁm)(i, Z), and sends to each P; the
vector (F1(i,)), - - -, Ft(i,))).
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Step 1 (details Il)

- Each P; computes, for i € [n], Fo(i,)) = fnjo ng(()m)(i,j),
and upon receiving (F1(i,)), . - ., Ft(i,J)) from P;, P; checks
that

n=1 t
F(i,j)-AG) = 3 S et - cmO(i ).
m=0 ¢=0

- Let Z C [n] be the set of indexes i's for which the check
above did not fail. P; interpolates Fém)(o,j) from

(F ) Yex
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Step 2 (intuition)

Form € {0,...,n —1}, each P; forwards the reconstructed
F(()m)(O,j) = ng:ojeF(m’@(O) to all parties

- This is again as in the “multiple king” idea, but how can
each receiver Py verify the correctness of

{77 (0. )Yjern?
* Solution: P; can also interpolate (F41(0,)), ..., Ft(0,)))
from {F(i,) }iez, SO P; can relay these to the parties

- Problem: “Compressor” £ is already known before P;
sends F{™(0,)), P; can cheat.

- Solution++: Sample a new “compressor” and send new
compressed extra information
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Step 2 (details 1)

- Form € {0,...,n —1}, each P; forwards the
reconstructed F™(0, /) = o4, jFMA(0) to all parties

- The parties call Fgj, to obtain w € F.

+ Each P; computes F(i,Z) = Y7\ w™F™ (i, Z) for
h € [t]. Then P; sends (Fi(i,)), ..., Fi(i,j)) to each P;.
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Step 2 (details 1)

- Each P; computes, for i € [n], Fo(i,)) = D e (/ J),
and upon receiving (Fi(i,}), ..., Fi(i,j)) from P;, PJ checks

that
n—1 t
= 3 > umt - e ).

m=0 ¢=0

- Let Z C [n] be the set of indexes I's for which the check
above did not fail. P; interpolates F'(X,j) from

(F'(0,)))iez
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Step 3 (intuition)

- For each P;, each Py, receives the “extra information”
(F1(0,)), - -, F(0,)))

- Each Py uses this to verify the received values
{Fém)(o,j)}jeln], forme {0,...,n—1}

- Each P, uses the verified “shares” to reconstruct
F(()m)(o> Z), recovering all x(m&)'g
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Step 3 (details 1)

» Each P; sends (F(0,)), ..., F{(0,))) to each P.

- Upon receiving these values each P, computes

F1(0,)) = S0 —lyw™ - F(M(0, /) and checks that
n—1 t
F'(0,)) - AG) = Y D w™mjt- ™90, ),
m=0 ¢=0

for each j € [n]

- Let J C [n] be the set of indexes j's for which the check
above did not fail. Foreach m € {0,...,n —1}, P,
interpolates F{™(0, Z) = S35_, x(MOZ¢ from

(F§™ (0.1)je.r, and outputs (™). :



Homework 1

Verify that the total communication is O(n?)

- So communication per secret is O(%) = 0(n)

Homework 2

Read Theorem 1 in the paper for security proof
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- We get statistically secure MPC for honest majority with G.0.D., O(depth(C))
rounds and O(n|C|) communication, in the preprocessing model

- We do this via a novel robust secret-sharing scheme with efficient
“authentication forwarding”

- See paper for (more) details: ia.cr/2023/1204

Thank you!

30


ia.cr/2023/1204

References i

[AAPP23]

[BFO12]

[BTHO6]

[DNO7]

|. Abraham et al. “Detect, Pack and Batch: Perfectly-Secure MPC with
Linear Communication and Constant Expected Time”". In: 2023.

E. Ben-Sasson, S. Fehr, and R. Ostrovsky. “Near-Linear
Unconditionally-Secure Multiparty Computation with a Dishonest
Minority”. In: 2012.

Z. Beerliova-Trubiniova and M. Hirt. “Efficient Multi-party Computation
with Dispute Control”. In: 2006.

I. Damgard and J. B. Nielsen. “Scalable and Unconditionally Secure
Multiparty Computation”. In: 2007.

31



References ii

[GSZ20] V. Goyal, Y. Song, and C. Zhu. “Guaranteed Output Delivery Comes Free in
Honest Majority MPC”. In: 2020.

[RB89] T. Rabin and M. Ben-Or. “Verifiable Secret Sharing and Multiparty
Protocols with Honest Majority (Extended Abstract)”. In: 1989.

32



	Introduction
	Challenges with existing approaches
	Our solution
	Technical details  Sit tight (or look at your phone)

