
On Fully-Secure Honest Majority MPC without n2 Round
Overhead
Latincrypt’23. Read at ia.cr/2023/1204

Daniel Escudero1 Serge Fehr2

October 5, 2023
1J.P. Morgan AI Research & J.P. Morgan AlgoCRYPT CoE

2CWI, Amsterdam

ia.cr/2023/1204

Introduction

Secure Multiparty Computation

• Multiple parties P1, . . . ,Pn have inputs x1, . . . , xn

• They want to compute a function y = f (x1, . . . , xn)

• Only leak the result y and nothing else about x1, . . . , xn

• Security should hold even in an adversary controls t out
of the n parties

1

Honest majority

We assume that t < n/2:

• The adversary corrupts a minority of the parties

• The majority of parties are honest

Why studying this setting?

• We can achieve information-theoretic security

→ More precisely, statistical security

• We can achieve guaranteed output delivery (G.O.D.)

→ Meaning the honest parties get correct output
regardless of the corrupt parties’ behavior

2

Metrics of interest

We model the function f as an arithmetic circuit over a finite
field F

Communication complexity

Number of field elements communicated in total

Number of rounds

Number of sequential message exchanges

3

Known results

[BTH06; BFO12; GSZ20] show that parties can compute an
arithmetic circuit C with G.O.D. (aka full security) and:

• Communication complexity O(n|C|)

• Round complexity O(depth(C) + n2)

Our Focus: Improving the round complexity to
O(depth(C)).

4

Motivation

Efficiency:

• For small depth(C), the term n2 adds many rounds

• In distributed settings, large number of rounds hurts
performance

We can get O(depth(C)) rounds in other related settings!

• t < n/3 and perfect security

• So why not here too?

5

The t < n/3 setting

For t < n/3 it is known that we can get perfect security,
O(depth(C)) rounds, and G.O.D., with either these
properties:

• Increasing to Ω(n2|C|) communication.a

• Or, retaining O(n|C|) communication but assuming
correlated randomness

Can we get a similar result for t < n/2 and statistical
security?

a[AAPP23] showed very recently that we can actually get O(n|C|).

6

Our result

We present an MPC for honest majority with the following
features:

• Statistical security

• Full security (G.O.D.)

• O(n|C|) communication

• O(depth(C)) rounds

• Assumes correlated randomness

Ongoing work

O(depth(C)) rounds with O(n2|C|) communication
without correlated randomness

7

Challenges with existing approaches

A successful framework for building protocols with full
security is called dispute control [BTH06]:

• Place “checkpoints” during the protocol execution

• Perform a fault detection step at each checkpoint

• If a fault is detected, find a pair of parties in dispute

• Re-run from the previous checkpoint, ensuring the same
dispute cannot occur again

re-runs = # pairs ≈ n2

n2 extra rounds!

We must avoid re-runs!

8

Secret-sharing-based MPC

Let F be a finite field.

Linear secret-sharing

For x ∈ F, we denote JxK = (x1, . . . , xn) a vector of
shares of x, so that

• Any set of t shares hides the secret x

• Any set of t + 1 shares determines the secret x

• The scheme is linear: JxK ± JyK = Jx ± yK

9

FACT

If the parties have certain correlated randomness
then MPC reduces to reconstructing certain secret-
shared values at every multiplication gate

10

Approach in t < n/3 using correlated randomness

FACT

If the parties have certain correlated randomness
then MPC reduces to reconstructing certain secret-
shared values at every multiplication gate

This is exploited to get O(depth(C)) rounds for t < n/3 by:

• Designing a robust reconstruction protocol

• Ensuring it requires O(n) total communication

11

Robust reconstruction

For t < n/3, use error correction

• Ensures incorrect shares can be filtered out and
removed

For t < n/2, use robust secret-sharing [RB89]

• Shares can be endowed with additional information
that ensures incorrect shares can be filtered out and
removed

12

Reconstruction with O(n) communication

Reconstructing a secret naively takes n2 communication:

• Every party send their share to every other party

Alternatively, send shares to one party who reconstructs
and sends result back

• 2n = O(n) messages

• What if this party decides not to announce anything?

• How to check that the announced reconstruction is
correct?

13

“Multiple kings” idea [DN07]

Assume t + 1 secrets Js0K , . . . , JstK will be reconstructed
simultaneously.

For i = 1, . . . ,n:

• Compute
q
rj
y
=

∑t
`=0 j` · Js`K

• Reconstruct
q
rj
y
towards party Pj

• Pj sends rj to all parties

• Parties recover (s0, . . . , st) from (r1, . . . , rn).

Communication: O(n2t+1) = O(n) per secret

Why does it work?

(r1, . . . , rn) can be seen as a “shares” themselves!
14

What about the t < n/2 setting?

Recall: We use robust secret-sharing.

• Each share has some extra information needed to rule
out incorrect shares

Previous approach does not work

• Compute
q
rj
y
=

∑t
`=0 j` · Js`K

• Reconstruct
q
rj
y
towards party Pj

• Pj sends rj to all parties

• Parties recover (s0, . . . , st) from (r1, . . . , rn).

Cannot rule out incorrect “shares” from (r1, . . . , rn)
since they lack the “extra information”!

15

Our solution

We design a novel robust secret-sharing scheme that
allows Pj to learn the “extra information” to send
alongside rj, so that the parties can recover (s0, . . . , st)
from (r1, . . . , rn)

16

More precisely

Our scheme allows robustly reconstructing (t + 1)n
secrets with O(n3) communication

• O(n3
(t+1)n) = O(n3n2) = O(n) per secret

Our scheme can be used to obtain MPC with

• Statistical and full security

• O(n|C|) communication

• O(depthC) rounds

• Assuming the parties have correlated randomness

17

Technical details
Sit tight (or look at your phone)

We define the sharing JxK for a secret x ∈ F to consist of

• Sharing polynomial F0(X) ∈ F≤t[X] subject to F0(0) = x,
• Randomizer polynomials F1(X), . . . , Ft(X) ∈ F≤t[X]
• Key polynomials A0(Y), . . . ,At(Y) ∈ F≤t[Y], and
• Checking polynomial C(X,Y) ∈ F≤t,≤t[X,Y] given by

C(X,Y) = F0(X)·A0(Y)+F1(X)·A1(Y)+· · ·+Ft(X)·At(Y) . (1)

18

C(X,Y) = F0(X) · A0(Y) + F1(X) · A1(Y) + · · ·+ Ft(X) · At(Y)

Every party Pi is given
F(i) := (F0(i), F1(i), . . . , Ft(i)),

A(i) := (A0(i),A1(i), . . . ,At(i)),

C(X, i).

Basic reconstruction:

• Every Pi sends (F0(i), F1(i), . . . , Ft(i))

• Every receiver Pj verifies that

C(i, j) = F0(i) · A0(j) + F1(i) · A1(j) + · · ·+ Ft(i) · At(j)

19

O(n) reconstruction

Input: (t + 1) · n secrets (
q
x(m,`)

y
), for ` ∈ {0, . . . , t} and

m ∈ {0, . . . ,n− 1}, each given by polynomials
(A(Y), F(m,`)(X), C(m,`)(X,Y)).

Output: Each party Pk learns all (x(m,`))m,`.

Assumption: A functionality Fcoin that distributes a
random value r to all parties upon request.

20

Step 1 (intuition)

For each m ∈ {0, . . . ,n− 1}, reconstruct
∑t

`=0 j` ·
q
x(m,`)

y

towards Pj
• This is the “multiple king” idea from [DN07]

• It is too expensive if everyone sends all of the “extra
information” for each m ∈ {0, . . . ,n− 1}

• Solution: Compress this extra information

21

Step 1 (details I)

Goal: Each Pj learns {F
(m)
0 (0, j) :=

∑t
`=0 j`F(m,`)(0)}n−1m=0:

• For m ∈ {0, . . . ,n− 1}, each Pi computes
F(m)(i,Z) =

∑t
`=0 Z`F(m,`)(i), and Pi sends F

(m)
0 (i, j) to

each Pj.

• The parties call Fcoin to obtain ξ ∈ F.

• For ` ∈ {0, . . . , t} and h ∈ [t], each Pi computes
Fh(i,Z) =

∑n−1
m=0 ξ

mF(m)
h (i,Z), and sends to each Pj the

vector (F1(i, j), . . . , Ft(i, j)).

22

Step 1 (details II)

• Each Pj computes, for i ∈ [n], F0(i, j) =
∑n−1

m=0 ξ
mF(m)

0 (i, j),
and upon receiving (F1(i, j), . . . , Ft(i, j)) from Pi, Pj checks
that

F(i, j) · A(j) =
n−1∑
m=0

t∑
`=0

ξmj` · C(m,`)(i, j).

• Let I ⊆ [n] be the set of indexes i’s for which the check
above did not fail. Pj interpolates F

(m)
0 (0, j) from

{F(m)
0 (i, j)}i∈I

23

Step 2 (intuition)

For m ∈ {0, . . . ,n− 1}, each Pj forwards the reconstructed
F(m)
0 (0, j) =

∑t
`=0 j`F(m,`)(0) to all parties

• This is again as in the “multiple king” idea, but how can
each receiver Pk verify the correctness of
{F(m)

0 (0, j)}j∈[n]?

• Solution: Pj can also interpolate (F1(0, j), . . . , Ft(0, j))
from {F(i, j)}i∈I , so Pj can relay these to the parties

• Problem: “Compressor” ξ is already known before Pj
sends F(m)

0 (0, j), Pj can cheat.

• Solution++: Sample a new “compressor” and send new
compressed extra information

24

Step 2 (details I)

• For m ∈ {0, . . . ,n− 1}, each Pj forwards the
reconstructed F(m)

0 (0, j) =
∑t

`=0 j`F(m,`)(0) to all parties

• The parties call Fcoin to obtain ω ∈ F.

• Each Pi computes F′h(i,Z) =
∑n−1

m=0 ω
mF(m)

h (i,Z) for
h ∈ [t]. Then Pi sends (F′1(i, j), . . . , F′t(i, j)) to each Pj.

25

Step 2 (details II)

• Each Pj computes, for i ∈ [n], F′0(i, j) =
∑n−1

m=0 ω
mF(m)

0 (i, j),
and upon receiving (F′1(i, j), . . . , F′t(i, j)) from Pi, Pj checks
that

F′(i, j) · A(j) =
n−1∑
m=0

t∑
`=0

ωmj` · C(m,`)(i, j).

• Let I ⊆ [n] be the set of indexes i’s for which the check
above did not fail. Pj interpolates F′(X, j) from
(F′(i, j))i∈I .

26

Step 3 (intuition)

• For each Pj, each Pk receives the “extra information”
(F′1(0, j), . . . , F′t(0, j))

• Each Pk uses this to verify the received values
{F(m)

0 (0, j)}j∈[n], for m ∈ {0, . . . ,n− 1}

• Each Pk uses the verified “shares” to reconstruct
F(m)
0 (0,Z), recovering all x(m,`)’s

27

Step 3 (details I)

• Each Pj sends (F′1(0, j), . . . , F′t(0, j)) to each Pk.

• Upon receiving these values, each Pk computes
F′0(0, j) =

∑n−1
m=0 ω

m · F(m)(0, j) and checks that

F′(0, j) · A(j) =
n−1∑
m=0

t∑
`=0

ωmj` · C(m,`)(0, j),

for each j ∈ [n]

• Let J ⊆ [n] be the set of indexes j’s for which the check
above did not fail. For each m ∈ {0, . . . ,n− 1}, Pk
interpolates F(m)

0 (0,Z) =
∑t

`=0 x(m,`)Z` from
(F(m)
0 (0, j))j∈J , and outputs (x(m,`))m,`. 28

Homework 1

Verify that the total communication is O(n3)

• So communication per secret is O(n3
(t+1)n) = O(n)

Homework 2

Read Theorem 1 in the paper for security proof

29

• We get statistically secure MPC for honest majority with G.O.D., O(depth(C))
rounds and O(n|C|) communication, in the preprocessing model

• We do this via a novel robust secret-sharing scheme with efficient
“authentication forwarding”

• See paper for (more) details: ia.cr/2023/1204

Thank you!

30

ia.cr/2023/1204

References i

[AAPP23] I. Abraham et al. “Detect, Pack and Batch: Perfectly-Secure MPC with
Linear Communication and Constant Expected Time”. In: 2023.

[BFO12] E. Ben-Sasson, S. Fehr, and R. Ostrovsky. “Near-Linear
Unconditionally-Secure Multiparty Computation with a Dishonest
Minority”. In: 2012.

[BTH06] Z. Beerliová-Trubíniová and M. Hirt. “Efficient Multi-party Computation
with Dispute Control”. In: 2006.

[DN07] I. Damgård and J. B. Nielsen. “Scalable and Unconditionally Secure
Multiparty Computation”. In: 2007.

31

References ii

[GSZ20] V. Goyal, Y. Song, and C. Zhu. “Guaranteed Output Delivery Comes Free in
Honest Majority MPC”. In: 2020.

[RB89] T. Rabin and M. Ben-Or. “Verifiable Secret Sharing and Multiparty
Protocols with Honest Majority (Extended Abstract)”. In: 1989.

32

	Introduction
	Challenges with existing approaches
	Our solution
	Technical details Sit tight (or look at your phone)

