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Filter Permutator and FLIP [MJSC16]
New stream cipher design adapted for homomorphic evaluation

Key Register K

P1

Function f

f(P1(K))
mi

ci

PRNG

Perm.
Gen.

Components:
I Key register K,
I Public PRNG,
I Filtering function f : Fn

2 → F2.

For each keystream bit:
I Pi is publicly derived,
I K is permuted,
I f is applied on Pi(K),
I the result is XORed to mi.

Particularity:

wH(Pi(K)) = wH(Pj(K)).

invariant Hamming weight
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Filter Permutator and FLIP [MJSC16]
New stream cipher design adapted for homomorphic evaluation

Key Register K

P2

Function f

f(P2(K))
mi

ci

PRNG

Perm.
Gen.

Components:
I Key register K,
I Public PRNG,
I Filtering function f : Fn
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Boolean functions on restricted inputs [CMR17]

Study the properties of Boolean functions applied only on a subset S of Fn
2 .

Global cryptographic criteria:
I balancedness,
I nonlinearity,
I degree,
I algebraic immunity (AI).

Restricted cryptographic criteria:
I restricted balancedness,
I restricted nonlinearity,
I restricted degree,
I restricted algebraic immunity.

For FLIP, properties on the slices: Ek,n = {x ∈ Fn
2 |wH(x) = k}

Question: How to build Boolean functions with good properties on all slices?

Weightwise Perfectly Balanced function (n = 2m)
For all k ∈ [1, n− 1]: |suppk(f)| = |Ek,n|/2,

f(0n) = 0 and f(1n) = 1.
WPBm denotes the set of 2m-variable WPB functions.
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WPB functions and cryptographic properties

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a,
GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23,
DM23, ...
Good parameters?

Generic studies on: nonlinearity, weightwise nonlinearity, and degree.

Algebraic Immunity

AI(f) = min
g 6=0
{deg(g) | f · g = 0 or (f + 1) · g = 0}.

Algebraic Attack, Courtois Meier 2003, adapted
I keystream bit si = f(Pi(K)),
I g such that f · g = 0,
I si = 1⇒ g(Pi(K)) = 0, an equation of degree deg(g) in the key variables,
I solving an algebraic system of degree AI(f) gives the key.
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WPB functions and AI distribution
Former results:
I few examples in 4, 8 and 16 variables,
I constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Distribution in 8 variables:

x 3 4
p̃AI(x)% 0.004 99.996

# 353 8427167

Bounds on a known construction (CMR17):

f(x1, x2, . . . , x2m) =
m∑

a=1

2m−a∑
i=1

2a−1−1∏
j=0

xi+j2m−a+1 .

Proposition

AI(f2m) ≥ m, and for m > 3, AI(f2m) ≤ 2m−2.

→ AI always at least O(logn)?
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WPB and minimum AI (1)

Minimum degree of annihilators of WPB functions

dε
m = min{AN(f + ε) | f ∈ WPBm}.

Restricted Walsh transform

to the slices
f a Boolean function, S a subset of Fn

2 , a an element of Fn
2 :

Wf,S(a) :=
∑
x∈S

(−1)f(x)+ax.

For S = Ek,n we denoteWf,Ek,n
(a) byWf,k(a).

Lemma: g ∈ B∗n with positiveWg,k(0) on all∗ slices
=⇒ ∃f ∈ WPBm such that f · g = 0 or (f + 1) · g = 0.

Proposition: Equivalent characterization of dε
m

dε
m = min{deg(g), g ∈ B∗n | ∀k ∈ [1− ε, 2m − ε],Wg,k(0) ≥ 0}.
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WPB and minimum AI (2)

First result:
dε

1 = 1 and for m > 1, dε
m > 1.

Theorem

min {AI(f) : f ∈ WPBm} = 2, for m ≥ 2

Constructive proof, with an explicit function: xi · (xj + xk)

Corollary:
f ∈ WPB2 ⇒ AI(f) = 2.
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Construction from GM23a
Input: g ∈ B2m .
Output: h ∈ WPBm.
1: Initiate the support of h to supp(g).
2: If 0n ∈ supp(g) remove 0n from supp(h).
3: If 1n 6∈ supp(g) add 1n to supp(h).
4: for k ← 1 to n− 1 do
5: Compute Ck,n =Wg,k(0)/2,
6: if Ck,n < 0 then
7: remove |Ck,n| elements from suppk(h),
8: else
9: if Ck,n > 0 then

10: add Ck,n new elements to suppk(h),
11: end if
12: end if
13: end for
14: return h

Non Perfect Balancedness (NPB)

NPB(f) = min
g∈WPBm

dH(f, g).

g

small NPB, high NL
Construction 1 h

WPB, high NL
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WPB constructions with upper bounded AI
Proposition (GM23a): h is WPB and NL(h) ≥ NL(g)− NPB(g).

Theorem
1+ g

Wg,k ≥ 0 for k ∈ [1, n]
Construction 1 h

AI(h) ≤ deg(g)

Proof intuition:
I supp(h) ⊆ supp(1 + g),
I 1 + g annihilates g so h · g = 0,
I g is non null.

Examples:
� Porcelain functions

κn = xi · (xj + xk)
NPB = NL = 2n−2

Construction 1 h

AI = 2

Cardinal (in the article): F8(κ8) > 2152 and F16(κ16) > 244521.

� Functions from GM23a
σ2,n + x1 + · · ·+ xn/2

bent
Construction 1 h

NL ≥ 2n−1 − 2n/2−2, AI = 2

13 / 16



WPB constructions with upper bounded AI
Proposition (GM23a): h is WPB and NL(h) ≥ NL(g)− NPB(g).

Theorem
1+ g

Wg,k ≥ 0 for k ∈ [1, n]
Construction 1 h

AI(h) ≤ deg(g)

Proof intuition:
I supp(h) ⊆ supp(1 + g),
I 1 + g annihilates g so h · g = 0,
I g is non null.

Examples:
� Porcelain functions

κn = xi · (xj + xk)
NPB = NL = 2n−2

Construction 1 h

AI = 2

Cardinal (in the article): F8(κ8) > 2152 and F16(κ16) > 244521.

� Functions from GM23a
σ2,n + x1 + · · ·+ xn/2

bent
Construction 1 h

NL ≥ 2n−1 − 2n/2−2, AI = 2

13 / 16



WPB constructions with upper bounded AI
Proposition (GM23a): h is WPB and NL(h) ≥ NL(g)− NPB(g).

Theorem
g

Wg,k ≥ 0 for k ∈ [0, n− 1]
Construction 1 h

AI(h) ≤ deg(g)

Proof intuition:
I supp(1 + h) ⊆ supp(1 + g),
I g annihilates 1 + g so (1 + h) · g = 0,
I g is non null.

Examples:
� Porcelain functions

κn = xi · (xj + xk)
NPB = NL = 2n−2

Construction 1 h

AI = 2

Cardinal (in the article): F8(κ8) > 2152 and F16(κ16) > 244521.

� Functions from GM23a
σ2,n + x1 + · · ·+ xn/2

bent
Construction 1 h

NL ≥ 2n−1 − 2n/2−2, AI = 2

13 / 16



WPB constructions with upper bounded AI
Proposition (GM23a): h is WPB and NL(h) ≥ NL(g)− NPB(g).

Theorem
g

Wg,k ≥ 0 for k ∈ [0, n− 1]
Construction 1 h

AI(h) ≤ deg(g)

Proof intuition:
I supp(1 + h) ⊆ supp(1 + g),
I g annihilates 1 + g so (1 + h) · g = 0,
I g is non null.

Examples:
� Porcelain functions

κn = xi · (xj + xk)
NPB = NL = 2n−2

Construction 1 h

AI = 2
Cardinal (in the article): F8(κ8) > 2152 and F16(κ16) > 244521.

� Functions from GM23a
σ2,n + x1 + · · ·+ xn/2

bent
Construction 1 h

NL ≥ 2n−1 − 2n/2−2, AI = 2

13 / 16



WPB constructions with upper bounded AI
Proposition (GM23a): h is WPB and NL(h) ≥ NL(g)− NPB(g).

Theorem
g

Wg,k ≥ 0 for k ∈ [0, n− 1]
Construction 1 h

AI(h) ≤ deg(g)

Proof intuition:
I supp(1 + h) ⊆ supp(1 + g),
I g annihilates 1 + g so (1 + h) · g = 0,
I g is non null.

Examples:
� Porcelain functions

κn = xi · (xj + xk)
NPB = NL = 2n−2

Construction 1 h

AI = 2

Cardinal (in the article): F8(κ8) > 2152 and F16(κ16) > 244521.

� Functions from GM23a
σ2,n + x1 + · · ·+ xn/2

bent
Construction 1 h

NL ≥ 2n−1 − 2n/2−2, AI = 2
13 / 16



WPB constructions with lower bounded AI

Mesnager Tang 21: small support modification⇒ small AI modification

Theorem
g

NPB(g) < 2n/2
Cons. 1 h

AI(h) ≥ AI(g)− blog(NPB(g) + 1)c

Proposition:
g + σn/2,n

NPB(g) < 2n/2, deg(g) < n
2

Cons. 1 h

AI ≥ n
2 − deg(g)− blog(NPB(g) + 1)c

Truncated CMR: fd,m(x1, x2, . . . , x2m) =
d∑

a=1

2m−a∑
i=1

2a−1−1∏
j=0

xi+j2m−a+1 .

fd,m + σn/2,n Cons. 1 h

AI ≥ n
2 − 2d−1 −m+ d+ 1

Example: d = 1⇒ AI(h) ≥ 2m−1 −m+ 1.

14 / 16



WPB constructions with lower bounded AI

Mesnager Tang 21: small support modification⇒ small AI modification

Theorem
g

NPB(g) < 2n/2
Cons. 1 h

AI(h) ≥ AI(g)− blog(NPB(g) + 1)c

Proposition:
g + σn/2,n

NPB(g) < 2n/2, deg(g) < n
2

Cons. 1 h

AI ≥ n
2 − deg(g)− blog(NPB(g) + 1)c

Truncated CMR: fd,m(x1, x2, . . . , x2m) =
d∑

a=1

2m−a∑
i=1

2a−1−1∏
j=0

xi+j2m−a+1 .

fd,m + σn/2,n Cons. 1 h

AI ≥ n
2 − 2d−1 −m+ d+ 1

Example: d = 1⇒ AI(h) ≥ 2m−1 −m+ 1.

14 / 16



WPB constructions with lower bounded AI

Mesnager Tang 21: small support modification⇒ small AI modification

Theorem
g

NPB(g) < 2n/2
Cons. 1 h

AI(h) ≥ AI(g)− blog(NPB(g) + 1)c

Proposition:
g + σn/2,n

NPB(g) < 2n/2, deg(g) < n
2

Cons. 1 h

AI ≥ n
2 − deg(g)− blog(NPB(g) + 1)c

Truncated CMR: fd,m(x1, x2, . . . , x2m) =
d∑

a=1

2m−a∑
i=1

2a−1−1∏
j=0

xi+j2m−a+1 .

fd,m + σn/2,n Cons. 1 h

AI ≥ n
2 − 2d−1 −m+ d+ 1

Example: d = 1⇒ AI(h) ≥ 2m−1 −m+ 1.

14 / 16



WPB constructions with lower bounded AI

Mesnager Tang 21: small support modification⇒ small AI modification

Theorem
g

NPB(g) < 2n/2
Cons. 1 h

AI(h) ≥ AI(g)− blog(NPB(g) + 1)c

Proposition:
g + σn/2,n

NPB(g) < 2n/2, deg(g) < n
2

Cons. 1 h

AI ≥ n
2 − deg(g)− blog(NPB(g) + 1)c

Truncated CMR: fd,m(x1, x2, . . . , x2m) =
d∑

a=1

2m−a∑
i=1

2a−1−1∏
j=0

xi+j2m−a+1 .

fd,m + σn/2,n Cons. 1 h

AI ≥ n
2 − 2d−1 −m+ d+ 1

Example: d = 1⇒ AI(h) ≥ 2m−1 −m+ 1.

14 / 16



WPB constructions with lower bounded AI

Mesnager Tang 21: small support modification⇒ small AI modification

Theorem
g

NPB(g) < 2n/2
Cons. 1 h

AI(h) ≥ AI(g)− blog(NPB(g) + 1)c

Proposition:
g + σn/2,n

NPB(g) < 2n/2, deg(g) < n
2

Cons. 1 h

AI ≥ n
2 − deg(g)− blog(NPB(g) + 1)c

Truncated CMR: fd,m(x1, x2, . . . , x2m) =
d∑

a=1

2m−a∑
i=1

2a−1−1∏
j=0

xi+j2m−a+1 .

fd,m + σn/2,n Cons. 1 h

AI ≥ n
2 − 2d−1 −m+ d+ 1

Example: d = 1⇒ AI(h) ≥ 2m−1 −m+ 1.
14 / 16



Summary

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

15 / 16



Conclusion and open questions
First study of the AI of WPB functions:

� Extreme values and distribution:
◦ Estimated distribution in 4, 8 and 16 variables.
◦ Bound on secondary constructions.
◦ Characterization minimum AI for all m.

� Constructions with bounded AI:
◦ bounds on GM23a’s Construction.
◦ Upper bounded AI, many functions of AI exactly 2.
◦ Lower bounded AI, a family with AI at least n/2− log(n) + 1.

Open questions:

� Functions with high NL and AI from GM23a’s construction?

� Impact of adding symmetric functions to the different cryptographic parameters?
→ First study in ePrint 2023/1101.

� Distribution of the algebraic immunity restricted to the slices?

Thank you!
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