On the algebraic immunity of weightwise perfectly balanced functions

Agnese GINI, Pierrick MÉAUX

Luxembourg University, Luxembourg

Quito — Ecuador Thursday October 7^{th}

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
- Filtering function $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
- Filtering function $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

For each keystream bit:

- P_i is publicly derived,
- \blacktriangleright K is permuted,
- f is applied on $P_i(K)$,
- the result is XORed to m_i .

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
- Filtering function $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

For each keystream bit:

- \triangleright P_i is publicly derived,
- \blacktriangleright K is permuted,
- f is applied on $P_i(K)$,
- the result is XORed to m_i .

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
- Filtering function $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

For each keystream bit:

- \triangleright P_i is publicly derived,
- \blacktriangleright K is permuted,
- f is applied on $P_i(K)$,
- the result is XORed to m_i .

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
- Filtering function $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

For each keystream bit:

- \triangleright P_i is publicly derived,
- \blacktriangleright K is permuted,
- f is applied on $P_i(K)$,
- the result is XORed to m_i .

Particularity:

 $\mathsf{w}_{\mathsf{H}}(P_i(K)) = \mathsf{w}_{\mathsf{H}}(P_j(K)).$

invariant Hamming weight

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_2^n .

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_2^n .

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

For FLIP, properties on the slices: $\mathsf{E}_{k,n} = \{x \in \mathbb{F}_2^n \,|\, \mathsf{w}_{\mathsf{H}}(x) = k\}$

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_2^n .

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

For FLIP, properties on the slices: $\mathsf{E}_{k,n} = \{x \in \mathbb{F}_2^n | \mathsf{w}_{\mathsf{H}}(x) = k\}$ Question: How to build Boolean functions with good properties on all slices?

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_2^n .

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

For FLIP, properties on the slices: $\mathsf{E}_{k,n} = \{x \in \mathbb{F}_2^n | \mathsf{w}_{\mathsf{H}}(x) = k\}$ Question: How to build Boolean functions with good properties on all slices?

Weightwise Perfectly Balanced function $(n = 2^m)$

For all $k \in [1, n-1]$:

 $|\mathsf{supp}_k(f)| = |\mathsf{E}_{k,n}|/2,$

 $f(0_n) = 0$ and $f(1_n) = 1$. WPB_m denotes the set of 2^m -variable WPB functions.

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...

Good parameters?

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...

Good parameters?

Generic studies on: nonlinearity, weightwise nonlinearity, and degree.

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...

Good parameters?

Generic studies on: nonlinearity, weightwise nonlinearity, and degree.

Algebraic Immunity

$$\mathsf{AI}(f) = \min_{g \neq 0} \{ \mathsf{deg}(g) \mid f \cdot g = 0 \text{ or } (f+1) \cdot g = 0 \}.$$

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...

Good parameters?

Generic studies on: nonlinearity, weightwise nonlinearity, and degree.

Algebraic Immunity

$$\mathsf{AI}(f) = \min_{g \neq 0} \{ \mathsf{deg}(g) \mid f \cdot g = 0 \text{ or } (f+1) \cdot g = 0 \}.$$

Algebraic Attack, Courtois Meier 2003, adapted

- keystream bit $s_i = f(P_i(K))$,
- g such that $f \cdot g = 0$,

▶ $s_i = 1 \Rightarrow g(P_i(K)) = 0$, an equation of degree deg(g) in the key variables,

solving an algebraic system of degree AI(f) gives the key.

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Former results:

- ▶ few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Former results:

- ▶ few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Distribution in 8 variables:

x	3	4
$ ilde{p}_{AI}(x)\%$	0.004	99.996
#	353	8427167

Former results:

- ▶ few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Distribution in 8 variables:

x	3	4
$ ilde{p}_{AI}(x)\%$	0.004	99.996
#	353	8427167

Bounds on a known construction (CMR17):

$$f(x_1, x_2, \dots, x_{2^m}) = \sum_{a=1}^m \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j2^{m-a+1}}.$$

Proposition

$$AI(f_{2^m}) \ge m$$
, and for $m > 3$, $AI(f_{2^m}) \le 2^{m-2}$.

Former results:

- ▶ few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Distribution in 8 variables:

x	3	4
$ ilde{p}_{AI}(x)\%$	0.004	99.996
#	353	8427167

Bounds on a known construction (CMR17):

$$f(x_1, x_2, \dots, x_{2^m}) = \sum_{a=1}^m \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j2^{m-a+1}}.$$

Proposition

$$AI(f_{2^m}) \ge m$$
, and for $m > 3$, $AI(f_{2^m}) \le 2^{m-2}$.

 \rightarrow AI always at least $\mathcal{O}(\log n)$?

Minimum degree of annihilators of WPB functions

 $\mathsf{d}_m^{\varepsilon} = \min\{\mathsf{AN}(f+\varepsilon) \,|\, f \in \mathcal{WPB}_m\}.$

Minimum degree of annihilators of WPB functions

$$\mathsf{d}_m^{\varepsilon} = \min\{\mathsf{AN}(f+\varepsilon) \,|\, f \in \mathcal{WPB}_m\}.$$

Restricted Walsh transform

f a Boolean function, S a subset of \mathbb{F}_2^n, a an element of $\mathbb{F}_2^n:$

$$\mathcal{W}_{f,S}(a) := \sum_{x \in S} (-1)^{f(x) + ax}.$$

For $S = \mathsf{E}_{k,n}$ we denote $\mathcal{W}_{f,\mathsf{E}_{k,n}}(a)$ by $\mathcal{W}_{f,k}(a)$.

Minimum degree of annihilators of WPB functions

$$\mathsf{d}_m^{\varepsilon} = \min\{\mathsf{AN}(f+\varepsilon) \,|\, f \in \mathcal{WPB}_m\}.$$

Restricted Walsh transform to the slices

$$\mathcal{W}_{f,k}(0) := \sum_{x \in \mathsf{E}_{k,n}} (-1)^{f(x)}.$$

Lemma: $g \in \mathcal{B}_n^*$ with positive $\mathcal{W}_{g,k}(0)$ on all^{*} slices $\implies \exists f \in \mathcal{WPB}_m$ such that $f \cdot g = 0$ or $(f+1) \cdot g = 0$.

Minimum degree of annihilators of WPB functions

$$\mathsf{d}_m^{\varepsilon} = \min\{\mathsf{AN}(f+\varepsilon) \,|\, f \in \mathcal{WPB}_m\}.$$

Restricted Walsh transform to the slices

$$\mathcal{W}_{f,k}(0) := \sum_{x \in \mathsf{E}_{k,n}} (-1)^{f(x)}.$$

Lemma: $g \in \mathcal{B}_n^*$ with positive $\mathcal{W}_{g,k}(0)$ on all^{*} slices $\implies \exists f \in \mathcal{WPB}_m$ such that $f \cdot g = 0$ or $(f+1) \cdot g = 0$.

Proposition: Equivalent characterization of d_m^{ε}

 $\mathsf{d}_m^\varepsilon = \min\{\mathsf{deg}(g), g \in \mathcal{B}_n^* \, | \, \forall k \in [1 - \varepsilon, 2^m - \varepsilon], \mathcal{W}_{g,k}(0) \ge 0\}.$

First result:

$$\mathsf{d}_1^{\varepsilon} = 1$$
 and for $m > 1, \mathsf{d}_m^{\varepsilon} > 1$.

First result:

$$\mathsf{d}_1^{\varepsilon} = 1$$
 and for $m > 1, \mathsf{d}_m^{\varepsilon} > 1$.

Theorem

 $\min \left\{ \mathsf{AI}(f) \colon f \in \mathcal{WPB}_m \right\} = 2, \text{ for } m \ge 2$

First result:

$$\mathsf{d}_1^{\varepsilon} = 1$$
 and for $m > 1, \mathsf{d}_m^{\varepsilon} > 1$.

Theorem

$\min \left\{ \mathsf{AI}(f) \colon f \in \mathcal{WPB}_m \right\} = 2, \text{ for } m \ge 2$

Constructive proof, with an explicit function: $x_i \cdot (x_j + x_k)$

First result:

$$\mathsf{d}_1^{\varepsilon} = 1$$
 and for $m > 1, \mathsf{d}_m^{\varepsilon} > 1$.

Theorem

$$\min \left\{ \mathsf{AI}(f) \colon f \in \mathcal{WPB}_m \right\} = 2, \text{ for } m \ge 2$$

Constructive proof, with an explicit function: $x_i \cdot (x_j + x_k)$

Corollary:

$$f \in \mathcal{WPB}_2 \Rightarrow \mathsf{AI}(f) = 2.$$

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Construction from GM23a

Input: $q \in \mathcal{B}_{2^m}$. **Output:** $h \in WPB_m$. 1: Initiate the support of h to supp(g). 2: If $0_n \in \operatorname{supp}(g)$ remove 0_n from $\operatorname{supp}(h)$. 3: If $1_n \notin \operatorname{supp}(g)$ add 1_n to $\operatorname{supp}(h)$. 4: for $k \leftarrow 1$ to n - 1 do 5: Compute $C_{k,n} = \mathcal{W}_{q,k}(0)/2$, 6: if $C_{k,n} < 0$ then 7: remove $|C_{k,n}|$ elements from $supp_k(h)$, 8: else 9: if $C_{k,n} > 0$ then 10: add $C_{k,n}$ new elements to $supp_k(h)$, 11: end if 12: end if 13: end for 14: return h

Construction from GM23a

Input: $q \in \mathcal{B}_{2^m}$. **Output:** $h \in WPB_m$. 1: Initiate the support of h to supp(g). 2: If $0_n \in \text{supp}(q)$ remove 0_n from supp(h). 3: If $1_n \notin \operatorname{supp}(q)$ add 1_n to $\operatorname{supp}(h)$. 4: for $k \leftarrow 1$ to n - 1 do 5: Compute $C_{k,n} = \mathcal{W}_{q,k}(0)/2$, 6: if $C_{k,n} < 0$ then 7: remove $|C_{k,n}|$ elements from $supp_k(h)$, 8: else 9: if $C_{k,n} > 0$ then 10: add $C_{k,n}$ new elements to $supp_k(h)$, 11: end if 12: end if 13[.] end for

14: **return** *h*

Non Perfect Balancedness (NPB)

$$\mathsf{NPB}(f) = \min_{g \in \mathcal{WPB}_m} \mathsf{d}_{\mathsf{H}}(f,g).$$

Construction from GM23a

Input: $q \in \mathcal{B}_{2^m}$. **Output:** $h \in \mathcal{WPB}_m$. 1: Initiate the support of h to supp(g). 2: If $0_n \in \text{supp}(q)$ remove 0_n from supp(h). 3: If $1_n \notin \operatorname{supp}(q)$ add 1_n to $\operatorname{supp}(h)$. 4: for $k \leftarrow 1$ to n - 1 do 5: Compute $C_{k,n} = \mathcal{W}_{q,k}(0)/2$, 6: if $C_{k,n} < 0$ then 7: remove $|C_{k,n}|$ elements from $supp_k(h)$, 8: else 9: if $C_{k,n} > 0$ then add $C_{k,n}$ new elements to $supp_k(h)$, 10:11: end if 12: end if 13[.] end for

14: **return** *h*

Non Perfect Balancedness (NPB)

$$\mathsf{NPB}(f) = \min_{g \in \mathcal{WPB}_m} \mathsf{d}_{\mathsf{H}}(f, g).$$

Construction 1

g small NPB, high NL h

WPB, high NL

Proposition (GM23a): *h* is WPB and $NL(h) \ge NL(g) - NPB(g)$.

Proposition (GM23a): *h* is WPB and $NL(h) \ge NL(g) - NPB(g)$.

Theorem1+g $\mathcal{W}_{g,k} \ge 0$ for $k \in [1, n]$ $\mathcal{C}onstruction 1$ h $\mathsf{AI}(h) \le \mathsf{deg}(g)$

Proof intuition:

- ▶ $supp(h) \subseteq supp(1+g),$
- 1 + g annihilates g so $h \cdot g = 0$,
- ▶ g is non null.

Proposition (GM23a): *h* is WPB and $NL(h) \ge NL(g) - NPB(g)$.

Theorem
$$g$$
 \mathcal{C} onstruction 1 h $\mathcal{W}_{g,k} \geq 0$ for $k \in [0, n-1]$ $\mathcal{A}I(h) \leq \deg(g)$

Proof intuition:

▶
$$supp(1+h) \subseteq supp(1+g)$$
,

• g annihilates
$$1 + g$$
 so $(1 + h) \cdot g = 0$,

 \blacktriangleright g is non null.

Proposition (GM23a): *h* is WPB and $NL(h) \ge NL(g) - NPB(g)$.

Theorem
$$g$$
 \mathcal{C} onstruction 1 h $\mathcal{W}_{g,k} \geq 0$ for $k \in [0, n-1]$ $\mathcal{A}I(h) \leq \deg(g)$

Examples:

Porcelain functions

Cardinal (in the article): $\mathfrak{F}_8(\kappa_8) > 2^{152}$ and $\mathfrak{F}_{16}(\kappa_{16}) > 2^{44521}$.

Proposition (GM23a): *h* is WPB and $NL(h) \ge NL(g) - NPB(g)$.

Theorem
$$g$$
 \mathcal{C} onstruction 1 h $\mathcal{W}_{g,k} \ge 0$ for $k \in [0, n-1]$ \mathcal{C} onstruction 1 h $\mathsf{AI}(h) \le \deg(g)$

Examples: • Porcelain functions $\kappa_n = x_i \cdot (x_j + x_k)$ NPB = NL = 2^{n-2} • Functions from GM23a $\sigma_{2,n} + x_1 + \dots + x_{n/2}$ bent Construction 1 h $KL \ge 2^{n-1} - 2^{n/2-2}$, AI = 2

13/16

Mesnager Tang 21: small support modification \Rightarrow small AI modification

Mesnager Tang 21: small support modification \Rightarrow small AI modification

Theorem		
$g \\ NPB(g) < 2^{n/2}$	$\underline{\qquad \text{Cons. 1}}_{\rightarrow}$	$h \\ AI(h) \ge AI(g) - \lfloor \log(NPB(g) + 1) \rfloor$

Theorem $g \qquad \qquad \underbrace{\text{Cons. 1}}_{\text{NPB}(g) < 2^{n/2}} \qquad \underbrace{\text{Cons. 1}}_{\text{AI}(h) \ge \text{AI}(g) - \lfloor \log(\text{NPB}(g) + 1) \rfloor}$

Proposition:

$$\frac{g + \sigma_{n/2,n}}{\mathsf{NPB}(g) < 2^{n/2}, \deg(g) < \frac{n}{2}} \xrightarrow{\text{Cons. 1}} \mathsf{AI} \geq \frac{n}{2} - \deg(g) - \lfloor \log(\mathsf{NPB}(g) + 1) \rfloor$$

Theorem

$$\begin{array}{ccc} g & & h \\ \mathsf{NPB}(g) < 2^{n/2} & & & \mathsf{AI}(h) \geq \mathsf{AI}(g) - \lfloor \log(\mathsf{NPB}(g) + 1) \rfloor \end{array}$$

Proposition:

$$\begin{split} g + \sigma_{n/2,n} & \xrightarrow{\text{Cons. 1}} & \text{Al} \geq \frac{n}{2} - \deg(g) - \lfloor \log(\mathsf{NPB}(g) + 1) \rfloor \\ \mathsf{NPB}(g) < 2^{n/2}, \deg(g) < \frac{n}{2} & \xrightarrow{\mathsf{Cons. 1}} & \mathsf{Al} \geq \frac{n}{2} - \deg(g) - \lfloor \log(\mathsf{NPB}(g) + 1) \rfloor \\ \mathsf{Truncated CMR:} & f_{d,m}(x_1, x_2, \dots, x_{2^m}) = \sum_{a=1}^d \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j2^{m-a+1}}. \\ f_{d,m} + \sigma_{n/2,n} & \xrightarrow{\mathsf{Cons. 1}} & \mathsf{Al} \geq \frac{n}{2} - 2^{d-1} - m + d + 1 \end{split}$$

Theorem

$$\begin{array}{ccc} g & & h \\ \mathsf{NPB}(g) < 2^{n/2} & & & \mathsf{AI}(h) \geq \mathsf{AI}(g) - \lfloor \log(\mathsf{NPB}(g) + 1) \rfloor \end{array}$$

Proposition:

$$\begin{array}{c} g + \sigma_{n/2,n} \\ \mathsf{NPB}(g) < 2^{n/2}, \deg(g) < \frac{n}{2} \end{array} \xrightarrow{\text{Cons. 1}} \mathsf{AI} \geq \frac{n}{2} - \deg(g) - \lfloor \log(\mathsf{NPB}(g) + 1) \rfloor \end{array}$$

Truncated CMR:
$$f_{d,m}(x_1, x_2, \dots, x_{2^m}) = \sum_{a=1}^d \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j2^{m-a+1}}.$$

 $f_{d,m} + \sigma_{n/2,n} \xrightarrow{\text{Cons. 1}} Al \ge \frac{h}{2} - 2^{d-1} - m + d + 1$

Example: $d = 1 \Rightarrow \mathsf{AI}(h) \ge 2^{m-1} - m + 1$.

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Conclusion and open questions

First study of the AI of WPB functions:

- Extreme values and distribution:
 - Estimated distribution in 4, 8 and 16 variables.
 - Bound on secondary constructions.
 - Characterization minimum AI for all m.
- Constructions with bounded AI:
 - bounds on GM23a's Construction.
 - Upper bounded AI, many functions of AI exactly 2.
 - Lower bounded AI, a family with AI at least $n/2 \log(n) + 1$.

Conclusion and open questions

First study of the AI of WPB functions:

- Extreme values and distribution:
 - Estimated distribution in 4, 8 and 16 variables.
 - Bound on secondary constructions.
 - Characterization minimum AI for all m.
- Constructions with bounded AI:
 - bounds on GM23a's Construction.
 - Upper bounded AI, many functions of AI exactly 2.
 - Lower bounded AI, a family with AI at least $n/2 \log(n) + 1$.

Open questions:

- ◊ Functions with high NL and AI from GM23a's construction?
- \diamond Impact of adding symmetric functions to the different cryptographic parameters? \rightarrow First study in ePrint 2023/1101.
- ◊ Distribution of the algebraic immunity restricted to the slices?

Conclusion and open questions

First study of the AI of WPB functions:

- Extreme values and distribution:
 - Estimated distribution in 4, 8 and 16 variables.
 - Bound on secondary constructions.
 - Characterization minimum AI for all m.
- Constructions with bounded AI:
 - bounds on GM23a's Construction.
 - Upper bounded AI, many functions of AI exactly 2.
 - Lower bounded AI, a family with AI at least $n/2 \log(n) + 1$.

Open questions:

- ◊ Functions with high NL and AI from GM23a's construction?
- \diamond Impact of adding symmetric functions to the different cryptographic parameters? \rightarrow First study in ePrint 2023/1101.
- Distribution of the algebraic immunity restricted to the slices?

Thank you!