On the algebraic immunity of weightwise perfectly balanced functions

Agnese Gini, Pierrick MÉAUX

Luxembourg University, Luxembourg

IIIII.III
 UNIVERSITÉ DU LUXEMBOURG

Quito - Ecuador
Thursday October $7^{\text {th }}$

Summary

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Filter Permutator and FLIP [MJSC16]

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
\rightarrow Filtering function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.

Filter Permutator and FLIP [MJSC16]

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
\rightarrow Filtering function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
For each keystream bit:
- P_{i} is publicly derived,
- K is permuted,
- f is applied on $P_{i}(K)$,
- the result is XORed to m_{i}.

Filter Permutator and FLIP [MJSC16]

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
\rightarrow Filtering function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
For each keystream bit:
- P_{i} is publicly derived,
- K is permuted,
- f is applied on $P_{i}(K)$,
- the result is XORed to m_{i}.

Filter Permutator and FLIP [MJSC16]

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
\rightarrow Filtering function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
For each keystream bit:
- P_{i} is publicly derived,
- K is permuted,
- f is applied on $P_{i}(K)$,
- the result is XORed to m_{i}.

Filter Permutator and FLIP [MJSC16]

New stream cipher design adapted for homomorphic evaluation

Components:

- Key register K,
- Public PRNG,
\rightarrow Filtering function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
For each keystream bit:
- P_{i} is publicly derived,
- K is permuted,
- f is applied on $P_{i}(K)$,
- the result is XORed to m_{i}.

Particularity:

$$
\mathrm{w}_{\mathrm{H}}\left(P_{i}(K)\right)=\mathrm{w}_{\mathrm{H}}\left(P_{j}(K)\right)
$$

invariant Hamming weight

Boolean functions on restricted inputs [CMR17]

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_{2}^{n}.

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

Boolean functions on restricted inputs [CMR17]

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_{2}^{n}.

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

For FLIP, properties on the slices: $\quad \mathrm{E}_{k, n}=\left\{x \in \mathbb{F}_{2}^{n} \mid \mathrm{w}_{\mathrm{H}}(x)=k\right\}$

Boolean functions on restricted inputs [CMR17]

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_{2}^{n}.

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

For FLIP, properties on the slices: $\quad \mathrm{E}_{k, n}=\left\{x \in \mathbb{F}_{2}^{n} \mid \mathbf{w}_{\mathrm{H}}(x)=k\right\}$ Question: How to build Boolean functions with good properties on all slices?

Boolean functions on restricted inputs [CMR17]

Study the properties of Boolean functions applied only on a subset S of \mathbb{F}_{2}^{n}.

Global cryptographic criteria:

- balancedness,
- nonlinearity,
- degree,
- algebraic immunity (AI).

Restricted cryptographic criteria:

- restricted balancedness,
- restricted nonlinearity,
- restricted degree,
- restricted algebraic immunity.

For FLIP, properties on the slices: $\quad \mathrm{E}_{k, n}=\left\{x \in \mathbb{F}_{2}^{n} \mid \mathrm{w}_{\mathrm{H}}(x)=k\right\}$
Question: How to build Boolean functions with good properties on all slices?

Weightwise Perfectly Balanced function $\left(n=2^{m}\right)$

For all $k \in[1, n-1]$:

$$
\left|\operatorname{supp}_{k}(f)\right|=\left|\mathrm{E}_{k, n}\right| / 2
$$

$f\left(0_{n}\right)=0$ and $f\left(1_{n}\right)=1$.
$\mathcal{W} \mathcal{P} \mathcal{B}_{m}$ denotes the set of 2^{m}-variable WPB functions.

WPB functions and cryptographic properties

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...

Good parameters?

WPB functions and cryptographic properties

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...

Good parameters?
Generic studies on: nonlinearity, weightwise nonlinearity, and degree.

WPB functions and cryptographic properties

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...
Good parameters?
Generic studies on: nonlinearity, weightwise nonlinearity, and degree.

Algebraic Immunity

$$
\operatorname{Al}(f)=\min _{g \neq 0}\{\operatorname{deg}(g) \mid f \cdot g=0 \text { or }(f+1) \cdot g=0\} .
$$

WPB functions and cryptographic properties

Many constructions: CMR17, LM19, TL19, LS20, MS21, MSL21, ZS21, GM22a, GS22, MCL22, MPJDL22, ZS22, GM22b, MKL22, MSLZ22, GM23a, ZJZQ23, DM23, ...
Good parameters?
Generic studies on: nonlinearity, weightwise nonlinearity, and degree.

Algebraic Immunity

$$
\operatorname{Al}(f)=\min _{g \neq 0}\{\operatorname{deg}(g) \mid f \cdot g=0 \text { or }(f+1) \cdot g=0\} .
$$

Algebraic Attack, Courtois Meier 2003, adapted

- keystream bit $s_{i}=f\left(P_{i}(K)\right)$,
- g such that $f \cdot g=0$,
- $s_{i}=1 \Rightarrow g\left(P_{i}(K)\right)=0$, an equation of degree $\operatorname{deg}(g)$ in the key variables,
- solving an algebraic system of degree $\mathrm{Al}(f)$ gives the key.

Table of Contents

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Summary

Introduction

Extreme values and distribution Constructions with bounded AI

Conclusion

WPB functions and AI distribution

Former results:

- few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

WPB functions and AI distribution

Former results:

- few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Distribution in 8 variables:

x	3	4
$\tilde{p}_{\mathrm{AI}}(x) \%$	0.004	99.996
$\#$	353	8427167

WPB functions and AI distribution

Former results:

- few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Distribution in 8 variables:

x	3	4
$\tilde{p}_{\mathrm{AI}}(x) \%$	0.004	99.996
$\#$	353	8427167

Bounds on a known construction (CMR17):

$$
f\left(x_{1}, x_{2}, \ldots, x_{2^{m}}\right)=\sum_{a=1}^{m} \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j 2^{m-a+1}}
$$

Proposition

$$
\mathrm{Al}\left(f_{2^{m}}\right) \geq m, \quad \text { and for } m>3, \quad \mathrm{Al}\left(f_{2^{m}}\right) \leq 2^{m-2}
$$

WPB functions and AI distribution

Former results:

- few examples in 4, 8 and 16 variables,
- constructions with optimal AI, Tang Liu 19, MSL21, MSLZ22.

Distribution in 8 variables:

x	3	4
$\tilde{p}_{\mathrm{AI}}(x) \%$	0.004	99.996
$\#$	353	8427167

Bounds on a known construction (CMR17):

$$
f\left(x_{1}, x_{2}, \ldots, x_{2^{m}}\right)=\sum_{a=1}^{m} \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j 2^{m-a+1}}
$$

Proposition

$$
\mathrm{Al}\left(f_{2^{m}}\right) \geq m, \quad \text { and for } m>3, \quad \mathrm{Al}\left(f_{2^{m}}\right) \leq 2^{m-2} .
$$

\rightarrow AI always at least $\mathcal{O}(\log n)$?

WPB and minimum AI (1)

Minimum degree of annihilators of WPB functions

$$
\mathrm{d}_{m}^{\varepsilon}=\min \left\{\operatorname{AN}(f+\varepsilon) \mid f \in \mathcal{W} \mathcal{P} \mathcal{B}_{m}\right\} .
$$

WPB and minimum AI (1)

Minimum degree of annihilators of WPB functions

$$
\mathrm{d}_{m}^{\varepsilon}=\min \left\{\operatorname{AN}(f+\varepsilon) \mid f \in \mathcal{W} \mathcal{P} \mathcal{B}_{m}\right\} .
$$

Restricted Walsh transform

f a Boolean function, S a subset of \mathbb{F}_{2}^{n}, a an element of \mathbb{F}_{2}^{n} :

$$
\mathcal{W}_{f, S}(a):=\sum_{x \in S}(-1)^{f(x)+a x}
$$

For $S=\mathrm{E}_{k, n}$ we denote $\mathcal{W}_{f, \mathrm{E}_{k, n}}(a)$ by $\mathcal{W}_{f, k}(a)$.

WPB and minimum AI (1)

Minimum degree of annihilators of WPB functions

$$
\mathrm{d}_{m}^{\varepsilon}=\min \left\{\operatorname{AN}(f+\varepsilon) \mid f \in \mathcal{W} \mathcal{P} \mathcal{B}_{m}\right\} .
$$

Restricted Walsh transform to the slices

$$
\mathcal{W}_{f, k}(0):=\sum_{x \in \mathrm{E}_{k, n}}(-1)^{f(x)} .
$$

Lemma: $g \in \mathcal{B}_{n}^{*}$ with positive $\mathcal{W}_{g, k}(0)$ on all* slices $\Longrightarrow \exists f \in \mathcal{W P B}_{m}$ such that $f \cdot g=0$ or $(f+1) \cdot g=0$.

WPB and minimum AI (1)

Minimum degree of annihilators of WPB functions

$$
\mathrm{d}_{m}^{\varepsilon}=\min \left\{\mathrm{AN}(f+\varepsilon) \mid f \in \mathcal{W} \mathcal{P} \mathcal{B}_{m}\right\}
$$

Restricted Walsh transform to the slices

$$
\mathcal{W}_{f, k}(0):=\sum_{x \in \mathrm{E}_{k, n}}(-1)^{f(x)} .
$$

Lemma: $g \in \mathcal{B}_{n}^{*}$ with positive $\mathcal{W}_{g, k}(0)$ on all* slices
$\Longrightarrow \exists f \in \mathcal{W P B} \mathcal{B}_{m}$ such that $f \cdot g=0$ or $(f+1) \cdot g=0$.
Proposition: Equivalent characterization of $\mathrm{d}_{m}^{\varepsilon}$

$$
\mathrm{d}_{m}^{\varepsilon}=\min \left\{\operatorname{deg}(g), g \in \mathcal{B}_{n}^{*} \mid \forall k \in\left[1-\varepsilon, 2^{m}-\varepsilon\right], \mathcal{W}_{g, k}(0) \geq 0\right\}
$$

WPB and minimum AI (2)

First result:

$$
\mathrm{d}_{1}^{\varepsilon}=1 \quad \text { and } \quad \text { for } m>1, \mathrm{~d}_{m}^{\varepsilon}>1 .
$$

WPB and minimum AI (2)

First result:

$$
\mathrm{d}_{1}^{\varepsilon}=1 \quad \text { and } \quad \text { for } m>1, \mathrm{~d}_{m}^{\varepsilon}>1 .
$$

Theorem

$$
\min \left\{\operatorname{Al}(f): f \in \mathcal{W} \mathcal{P} \mathcal{B}_{m}\right\}=2, \text { for } m \geq 2
$$

WPB and minimum AI (2)

First result:

$$
\mathrm{d}_{1}^{\varepsilon}=1 \quad \text { and } \quad \text { for } m>1, \mathrm{~d}_{m}^{\varepsilon}>1 .
$$

Theorem

$$
\min \left\{\operatorname{AI}(f): f \in \mathcal{W P B}_{m}\right\}=2, \text { for } m \geq 2
$$

Constructive proof, with an explicit function: $x_{i} \cdot\left(x_{j}+x_{k}\right)$

WPB and minimum AI (2)

First result:

$$
\mathrm{d}_{1}^{\varepsilon}=1 \quad \text { and } \quad \text { for } m>1, \mathrm{~d}_{m}^{\varepsilon}>1 .
$$

Theorem

$$
\min \left\{\operatorname{AI}(f): f \in \mathcal{W P B}_{m}\right\}=2, \text { for } m \geq 2
$$

Constructive proof, with an explicit function: $x_{i} \cdot\left(x_{j}+x_{k}\right)$

Corollary:

$$
f \in \mathcal{W P}_{2} \Rightarrow \operatorname{Al}(f)=2
$$

Summary

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Construction from GM23a

```
Input: \(g \in \mathcal{B}_{2}{ }^{m}\).
Output: \(h \in \mathcal{W P B}_{m}\).
    1: Initiate the support of \(h\) to \(\operatorname{supp}(g)\).
    2: If \(0_{n} \in \operatorname{supp}(g)\) remove \(0_{n}\) from \(\operatorname{supp}(h)\).
    3: If \(1_{n} \notin \operatorname{supp}(g)\) add \(1_{n}\) to \(\operatorname{supp}(h)\).
    4: for \(k \leftarrow 1\) to \(n-1\) do
    5: \(\quad\) Compute \(C_{k, n}=\mathcal{W}_{g, k}(0) / 2\),
    6: \(\quad\) if \(C_{k, n}<0\) then
    7: \(\quad\) remove \(\left|C_{k, n}\right|\) elements from \(\operatorname{supp}_{k}(h)\),
    8: else
    9: if \(C_{k, n}>0\) then
10: \(\quad \operatorname{add} C_{k, n}\) new elements to \(\operatorname{supp}_{k}(h)\),
        end if
        end if
        end for
        return \(h\)
```


Construction from GM23a

```
Input: }g\in\mp@subsup{\mathcal{B}}{2}{m}
Output: }h\in\mp@subsup{\mathcal{WPB}}{m}{}\mathrm{ .
    1: Initiate the support of }h\mathrm{ to }\operatorname{supp}(g)\mathrm{ .
    2: If }\mp@subsup{0}{n}{}\in\operatorname{supp}(g)\mathrm{ remove }\mp@subsup{0}{n}{}\mathrm{ from supp (h).
    3: If 1}\mp@subsup{1}{n}{}\not\in\operatorname{supp}(g)\mathrm{ add 1}\mp@subsup{1}{n}{}\mathrm{ to }\operatorname{supp}(h)
    4: for }k\leftarrow1\mathrm{ to }n-1\mathrm{ do
    5: Compute C Ck,n}=\mp@subsup{\mathcal{W}}{g,k}{}(0)/2\mathrm{ ,
    6: if C}\mp@subsup{C}{k,n}{}<0\mathrm{ then
    7: remove }|\mp@subsup{C}{k,n}{}|\mathrm{ elements from supp}k(h)
    8: else
    9: if C}\mp@subsup{C}{k,n}{}>0\mathrm{ then
10: add C Ck,n}\mathrm{ new elements to supp
11: end if
12: end if
13: end for
14: return h
```


Non Perfect Balancedness (NPB)

$$
\operatorname{NPB}(f)=\min _{g \in \mathcal{W} \mathcal{P} \mathcal{B}_{m}} \mathrm{~d}_{\mathrm{H}}(f, g)
$$

Construction from GM23a

```
Input: }g\in\mp@subsup{\mathcal{B}}{2}{2m}
Output: }h\in\mathcal{WP}\mp@subsup{\mathcal{B}}{m}{}\mathrm{ .
    1: Initiate the support of }h\mathrm{ to supp (g).
    2: If 0}\mp@subsup{0}{n}{}\in\operatorname{supp}(g)\mathrm{ remove }\mp@subsup{0}{n}{}\mathrm{ from supp (h).
    3: If 1n}\not<\operatorname{supp}(g)\mathrm{ add 1n to supp(h).
    4: for }k\leftarrow1\mathrm{ to }n-1\mathrm{ do
    5: Compute C}\mp@subsup{C}{k,n}{}=\mp@subsup{\mathcal{W}}{g,k}{}(0)/2\mathrm{ ,
    6: if C}\mp@subsup{C}{k,n}{<<0 then
    7: remove }|\mp@subsup{C}{k,n}{}|\mathrm{ elements from supp
    8: else
    9: if C}\mp@subsup{C}{k,n}{}>0\mathrm{ then
10: add C Ck,n}\mathrm{ new elements to }\mp@subsup{\operatorname{supp}}{k}{(})\mathrm{ (h),
11: end if
12: end if
13: end for
14: return h
```


Non Perfect Balancedness (NPB)

$$
\operatorname{NPB}(f)=\min _{g \in \mathcal{W} \mathcal{P} \mathcal{B}_{m}} \mathrm{~d}_{\mathrm{H}}(f, g)
$$

WPB constructions with upper bounded AI

Proposition (GM23a): h is WPB and $\mathrm{NL}(h) \geq \mathrm{NL}(g)-\mathrm{NPB}(g)$.

WPB constructions with upper bounded AI

Proposition (GM23a): h is WPB and $\mathrm{NL}(h) \geq \mathrm{NL}(g)-\operatorname{NPB}(g)$.

Theorem

$$
\begin{gathered}
1+g \\
\mathcal{W}_{g, k} \geq 0 \text { for } k \in[1, n]
\end{gathered} \xrightarrow{\text { Construction } 1} \quad \begin{gathered}
h \\
\mathrm{Al}(h) \leq \operatorname{deg}(g)
\end{gathered}
$$

Proof intuition:

- $\operatorname{supp}(h) \subseteq \operatorname{supp}(1+g)$,
- $1+g$ annihilates g so $h \cdot g=0$,
- g is non null.

WPB constructions with upper bounded AI

Proposition (GM23a): h is WPB and $\mathrm{NL}(h) \geq \mathrm{NL}(g)-\mathrm{NPB}(g)$.

Theorem

g
$\mathcal{W}_{g, k} \geq 0$ for $k \in[0, n-1]$
:---:

Proof intuition:

- $\operatorname{supp}(1+h) \subseteq \operatorname{supp}(1+g)$,
- g annihilates $1+g$ so $(1+h) \cdot g=0$,
- g is non null.

WPB constructions with upper bounded AI

Proposition (GM23a): h is WPB and $\mathrm{NL}(h) \geq \mathrm{NL}(g)-\operatorname{NPB}(g)$.

Theorem

g
$\mathcal{W}_{g, k} \geq 0$ for $k \in[0, n-1]$
:---:

Examples:
\diamond Porcelain functions

$$
\begin{aligned}
& \kappa_{n}=x_{i} \cdot\left(x_{j}+x_{k}\right) \quad \text { Construction } 1 \\
& \mathrm{NPB}=\mathrm{NL}=2^{n-2} \quad
\end{aligned}
$$

Cardinal (in the article): $\mathfrak{F}_{8}\left(\kappa_{8}\right)>2^{152}$ and $\mathfrak{F}_{16}\left(\kappa_{16}\right)>2^{44521}$.

WPB constructions with upper bounded AI

Proposition (GM23a): h is WPB and $\mathrm{NL}(h) \geq \mathrm{NL}(g)-\operatorname{NPB}(g)$.

Theorem

g
$\mathcal{W}_{g, k} \geq 0$ for $k \in[0, n-1]$
:---:

Examples:
\diamond Porcelain functions

$$
\begin{array}{ccc}
\kappa_{n}=x_{i} \cdot\left(x_{j}+x_{k}\right) \\
\text { NPB }=\mathrm{NL}=2^{n-2} & \xrightarrow{\text { Construction 1 }} & \begin{array}{c}
h \\
\end{array}
\end{array}
$$

\diamond Functions from GM23a

$$
\begin{gathered}
\sigma_{2, n}+x_{1}+\cdots+x_{n / 2} \\
\text { bent }
\end{gathered} \xrightarrow{\text { Construction } 1} \mathrm{NL} \geq 2^{n-1}-2^{n / 2-2}, \mathrm{Al}=\underset{13 / 16}{2}
$$

WPB constructions with lower bounded AI

Mesnager Tang 21: small support modification \Rightarrow small AI modification

WPB constructions with lower bounded AI

Mesnager Tang 21: small support modification \Rightarrow small AI modification

Theorem

$$
\begin{gathered}
g \\
\mathrm{NPB}(g)<2^{n / 2}
\end{gathered} \stackrel{\text { Cons. } 1}{ } \quad \begin{gathered}
h \\
\mathrm{Al}(h) \geq \mathrm{Al}(g)-\lfloor\log (\mathrm{NPB}(g)+1)\rfloor
\end{gathered}
$$

WPB constructions with lower bounded AI

Theorem

$$
\begin{gathered}
g \\
\mathrm{NPB}(g)<2^{n / 2}
\end{gathered} \stackrel{\text { Cons. } 1}{ } \quad \begin{gathered}
h \\
\mathrm{Al}(h) \geq \mathrm{Al}(g)-\lfloor\log (\mathrm{NPB}(g)+1)\rfloor
\end{gathered}
$$

Proposition:

$$
\begin{gathered}
g+\sigma_{n / 2, n} \\
\mathrm{NPB}(g)<2^{n / 2}, \operatorname{deg}(g)<\frac{n}{2}
\end{gathered} \stackrel{\text { Cons. } 1}{\longrightarrow} \mathrm{AI} \geq \frac{n}{2}-\operatorname{deg}(g)-\lfloor\log (\mathrm{NPB}(g)+1)\rfloor
$$

WPB constructions with lower bounded AI

Theorem

$$
\begin{gathered}
g \\
\mathrm{NPB}(g)<2^{n / 2}
\end{gathered} \stackrel{\text { Cons. } 1}{ } \quad \begin{gathered}
h \\
\mathrm{Al}(h) \geq \mathrm{Al}(g)-\lfloor\log (\mathrm{NPB}(g)+1)\rfloor
\end{gathered}
$$

Proposition:

$$
g+\sigma_{n / 2, n} \quad \stackrel{\text { Cons. } 1}{\longrightarrow} \quad h
$$

$\mathrm{NPB}(g)<2^{n / 2}, \operatorname{deg}(g)<\frac{n}{2} \longrightarrow \mathrm{AI} \geq \frac{n}{2}-\operatorname{deg}(g)-\lfloor\log (\mathrm{NPB}(g)+1)\rfloor$

Truncated CMR: $\quad f_{d, m}\left(x_{1}, x_{2}, \ldots, x_{2^{m}}\right)=\sum_{a=1}^{d} \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j 2^{m-a+1}}$.

$$
f_{d, m}+\sigma_{n / 2, n} \xrightarrow{\text { Cons. } 1} \quad \begin{gathered}
h \\
\mathrm{Al} \geq \frac{n}{2}-2^{d-1}-m+d+1
\end{gathered}
$$

WPB constructions with lower bounded AI

Theorem

$$
\begin{gathered}
g \\
\mathrm{NPB}(g)<2^{n / 2}
\end{gathered} \stackrel{\text { Cons. } 1}{ } \quad \begin{gathered}
h \\
\mathrm{Al}(h) \geq \mathrm{Al}(g)-\lfloor\log (\mathrm{NPB}(g)+1)\rfloor
\end{gathered}
$$

Proposition:

$$
g+\sigma_{n / 2, n} \quad \stackrel{\text { Cons. } 1}{\longrightarrow} \quad h
$$

$\mathrm{NPB}(g)<2^{n / 2}, \operatorname{deg}(g)<\frac{n}{2} \longrightarrow \mathrm{AI} \geq \frac{n}{2}-\operatorname{deg}(g)-\lfloor\log (\mathrm{NPB}(g)+1)\rfloor$

Truncated CMR: $\quad f_{d, m}\left(x_{1}, x_{2}, \ldots, x_{2^{m}}\right)=\sum_{a=1}^{d} \sum_{i=1}^{2^{m-a}} \prod_{j=0}^{2^{a-1}-1} x_{i+j 2^{m-a+1}}$.

$$
\begin{aligned}
& f_{d, m}+\sigma_{n / 2, n} \\
& \text { Cons. } 1
\end{aligned} \begin{gathered}
h \\
\end{gathered} \quad \mathrm{AI} \geq \frac{n}{2}-2^{d-1}-m+d+1
$$

Example: $d=1 \Rightarrow \mathrm{Al}(h) \geq 2^{m-1}-m+1$.

Summary

Introduction

Extreme values and distribution

Constructions with bounded AI

Conclusion

Conclusion and open questions

First study of the AI of WPB functions:
\diamond Extreme values and distribution:

- Estimated distribution in 4, 8 and 16 variables.
- Bound on secondary constructions.
- Characterization minimum AI for all m.
\diamond Constructions with bounded AI:
- bounds on GM23a's Construction.
- Upper bounded AI, many functions of AI exactly 2.
- Lower bounded AI, a family with AI at least $n / 2-\log (n)+1$.

Conclusion and open questions

First study of the AI of WPB functions:
\diamond Extreme values and distribution:

- Estimated distribution in 4, 8 and 16 variables.
- Bound on secondary constructions.
- Characterization minimum AI for all m.
\diamond Constructions with bounded AI:
- bounds on GM23a's Construction.
- Upper bounded AI, many functions of AI exactly 2.
- Lower bounded AI, a family with AI at least $n / 2-\log (n)+1$.

Open questions:
\diamond Functions with high NL and AI from GM23a's construction?
\diamond Impact of adding symmetric functions to the different cryptographic parameters?
\rightarrow First study in ePrint 2023/1101.
\diamond Distribution of the algebraic immunity restricted to the slices?

Conclusion and open questions

First study of the AI of WPB functions:
\diamond Extreme values and distribution:

- Estimated distribution in 4, 8 and 16 variables.
- Bound on secondary constructions.
- Characterization minimum AI for all m.
\diamond Constructions with bounded AI:
- bounds on GM23a's Construction.
- Upper bounded AI, many functions of AI exactly 2.
- Lower bounded AI, a family with AI at least $n / 2-\log (n)+1$.

Open questions:
\diamond Functions with high NL and AI from GM23a's construction?
\diamond Impact of adding symmetric functions to the different cryptographic parameters?
\rightarrow First study in ePrint 2023/1101.
\diamond Distribution of the algebraic immunity restricted to the slices?

