
Proofs of Space
Matteo Campanelli

Protocol Labs

binarywhales.org matteo@protocol.ai

ASCrypto, Oct 3rd 2023

http://binarywhales.org/

Can we construct a proof which persuades we are
spending a certain (amount of) resource X?

Yesterday’s Talk
(by Arantxa)

Prwoof!

(proof)

Witness w for a relation R(x,w)

Today: proofs yes; but proofs of ”resources”

Resource=Space Resource=Time

Fighting Junk Mail (Spam)

Fighting Junk Mail Through PoW (Proofs of Work)
[DworkNaor (Crypto92)]

Proof of ”work” (or, CPU cycles)

I will not consider the email
”received” unless the PoW
checks

Rationale:
- Spammers’ model: ”send cheaply a

vast volume of mail”
- PoW now requires them to spend

some amount per email (e.g.
0.0000005 cents)

- Not convenient any more in bulk
- NB: this is still OK for the honest

(occasional) sender

A Simple Example of Proofs of Work

• Hash-based:
• Puzzle: Sample random x (this is our challenge)

• Solution: find r such that we find a certain amount of trailing zeroes

H(x||r) = 0x(…anything…)000…000

• Intuition: If there are M trailing zeroes this requires roughly 2^M on average

• To check the solution as a verifier: receive r; check trailing zeroes in H(x||r)
• (verifying is way faster than searching for the solution)

The single thing I want you to learn from this talk if
you really really want to mentally leave right now

• PoW can save cat lives from spammers
• (non-joke version: PoW is useful against spam)

• You can make a PoW by using some hash thing-y

(assuming the hash output looks random enough)

Next on proofs of work (I lied: I would you like to take away a little bit more out of this talk)

• Definition: What does a definition for PoW look like?

• Applications: What are other applications for PoW?

• Caveats: what are limitations of applying Proofs of Work?

Defining PoW: Syntax

Proof of Work

From Ball et al. 2017 (“Proofs of Useful Work”) https://ia.cr/2017/203

https://ia.cr/2017/203

Defining PoW: What about Security?

• This standard definition template won’t work:
• “For all PPT * Adv … then Adv cannot win a certain game”

* PPT: Probabilistic Polynomial Time

Gen(…) -> c c

”bad” solution

Verify(c, bad_solution) =1

PPT ~

We are
content
with

Defining PoW: Intuition for the right def

• Denote by T* := Time(Eval(c)) (honest solver’s time)

• For all adversaries running in time << T*

• This happens with very high probability:

Gen(…) -> c c

”bad” solution

Verify(c, bad_solution) =0 (we do not accept)

Are we done?
One more thing:
amortization should be
impossible.

If I ask you 100 challenges you
should spend roughly 100 T*
work.

Applications of Proofs of Work

• Fighting Spam/Denial-of-Service

• Bulletin Boards
• (next block in a chain)

?

PoWclg

The second thing I want you to make sure you take
from this talk in case you want to start snoozing now

When definining PoW:

- We do not use PPTs (as usual in cryptography); we

specify the power of the adversary.

- We need to be careful about amortization.

Applications: denial of service in general; bullettin

boards (e.g. Bitcoin)

Questions?

The third thing I want you to take from this
talk before you start fantasizing about lunch

PoW have limitations.

Limitations/Caveats of PoW

• Waste

• The problem of ASICs*:
• Or the ”Honest/Malicious gap”

*ASICs: Application-Specific Integrated Circuits

Issue: Waste of Energy in PoW

How to mitigate the problem of energy
waste?
• Option 1:

• Shifting to other resources (e.g. space)

• Option 2:
• Actually making them ”useful”: using that grinding for “natural problems”

Mitigating Waste: Make PoW Useful

• The classic hash-based PoW does “nothing useful”

• Can we obtain a PoW that is “useful”?

• Intuition: “the grinding we are proving can be used for something
else”

• Example: PrimeCoin (2013)
• Introduces PoW based on search for prime numbers

A Syntax for Proofs of Useful Work

Standard Proof of Work

Proof of Useful Work

From Ball et al. 2017 (“Proofs of Useful Work”) https://ia.cr/2017/203

https://ia.cr/2017/203

Examples of Proofs of Useful Work

• Credits to Marshal Ball for pics

Other natural examples: 3SUM, etc…

Another Limitation: the ”ASIC” problem

Incentive: making them pay 0.0000005 cents

They will not pay the same anymore!

Specialized HW for hashing
(ASIC)

Standard HW

Last slides

• What we will look at next:
• Proof of Space

• Same application realms
• Our hope is to remove the limitations we saw:

• Reduce the energy waste (we will talk about usefulness first)
• Removing the ”ASIC problem”

• Proof of Work
• Limitations:

• can be wasteful, ASICs can raise the bar for honest parties

• Mitigating waste
• Useful Work

Proofs of Space
(an intuition through our old friend: spam)

Proof of ”space”

I will not consider the email
”received” unless the PoS checks

The hoped guarantee:
the adversary is must have
used Y amount of space if
proof checks

Why would this address PoW’s
limitations?
- Energy: CPU vs RAM (or disk)
- ”ASIC”: no equivalent for

memory that can provide
savings of orders of
magnitude like ASICs did for
CPU

Applications: Making Proofs of Space Useful

• Applications of PoS (Proofs of Space)
• Could be the same as before:

• Figthing denial of service, etc.

• Consensus for next block (Chia)

• Or more (e.g., through usefulness)

• By analogy, usefulness in PoW was: “I am using grinding for computation f(x)”
(where f is some natural function)

• “Natural usefulness in PoS”: let’s use PoS to guarantee storage of useful files

• (E.g., data sets, Wikipedia, the web in general)

• => System where we you can obtain cryptographic incentives of somebody using
a certain amount of space AND using it that space for storing a specific file

Earlier during this talk:

Then

F

Now

Proof of Useful Space:
System where we you can
obtain cryptographic
incentives of somebody using
a certain amount of space
AND using it that space for
storing a specific file

Next: I want to give a flavor of how one can define this

A syntax for Proofs of Useful Space

F

aux

digest

Prover Verifier

Init(id, F)
digest

clg Challenge(digest)
clg

prf Respond(aux, clg)
prf Verify(digest, clg, prf)

prf

Security intuition: “If prf checks then Prover is storing a certain amount of storage related to F”

A non-solution

aux

digest

Prover Verifier

Init(id, F):
digest <- hash(F)

digest

clg

Check F against digest by hashing

prf =

Security intuition: “If prf checks then Prover is storing a certain amount of storage related to F”

F

F

A non-solution—Issue 1: succinctness

clg

Check F against digest by hashing

prf =

Security intuition: “If prf checks then Prover is storing a certain amount of storage related to F”

F

Succinctness:
proof should be small;
verifier should be efficient

F

A non-solution—Issue 2: space requirement

clg

Check F against digest by hashing

prf =

Security intuition: “If prf checks then Prover is storing a certain amount of storage related to F”

F

F

Space requirement

”Usefulness”
requirement

Which requirements does
this construction satisfy?

A non-solution—Issue 2: space requirement

clg

Check F against digest by hashing

prf =

Security intuition: “If prf checks then Prover is storing a certain amount of storage related to F”

F

F

Space requirement

”Usefulness”
requirement

F = “1111…111111”
(one repeated one trillion times)

The file is compressible
=> The prover does not need to
store F to provide it.

What we want instead:
Space requirement should hold for
any file, even compressible ones.

NB: not all “problematic” files are
obviously so.
Example: F = (PRF_k(1), PRF_k(2),…)

Thea naïve solution does not work.
So how do we solve these problems??

More resources and wrap up

• https://proofofspace.org/references

• Filecoin.io

For any other questions:
matteo@protocol.ai

binarywhales.org

Thanks!

https://proofofspace.org/references
filecoin.io
mailto:matteo@protocol.ai
http://binarywhales.org/

