Privacy-preserving edit distance computation using secret-sharing two-party computation

Hernan Vanegas ${ }^{1}$ Daniel Cabarcas ${ }^{2}$ Diego F. Aranha ${ }^{3}$
${ }^{1}$ HashCloak Inc. - Universidad Nacional de Colombia, Medellín, Colombia.
${ }^{2}$ Universidad Nacional de Colombia, Medellín, Colombia.
${ }^{3}$ Aarhus University, Aarhus, Denmark.

LATINCRYPT 2023

Overview

- Edit distance and its privacy concerns
- Wagner-Fischer algorithm (WF)
- Our solution:
- Division of WF into two sections: preamble and arithmetic section.
- Preamble computation
- Arithmetic section
- Automatic generation of formulas for the arithmetic section
- Experiments

Edit Distance

String B	C	C	A	T	G	A

－Minimum number of insertions，deletions，and changes．
－Wagner－Fischer algorithm［WF74］．

Privacy Concerns in Edit Distance

- The edit distance is used in genomics to compare two DNA chains.
- Revealing DNA chains have risks for the chain owner:
- Re-identification.
- Attribute disclosure attacks via DNA.
- Ancestry identification.

Privacy-Preserving Setup

Warning!
One of the parties can behave maliciously to steal the string of the other party.

Our Contributions

Current solutions:

- Garbled circuits (GC)
- Homomorphic encryption (HE)

But what about protocols based on secret-sharing schemes (SS)?

Our Contributions

Current solutions:

- Garbled circuits (GC)
- Homomorphic encryption (HE)

But what about protocols based on secret-sharing schemes (SS)?

Our approach:

- Two-party protocol.
- Separation of the Wagner-Fischer algorithm into two sections:
- Preamble: Tinier [Fre+15] - binary domain.
- Arithmetic part: $\mathrm{SPDZ}_{2^{k}}[\mathrm{Cra}+18]$ and edaBits $[\mathrm{Esc}+20]$ - arithmetic domain.
- Mixed-circuit solution: daBits [RW19; Aly+19]
- The arithmetic part is computed in blocks. Generalization of Cheon et al. [CKL15].

The Wagner-Fischer Algorithm [WF74]

Input: two DNA chains $P=\left[p_{1}, \ldots, p_{n}\right]$ and $Q=\left[q_{1}, \ldots, q_{m}\right]$.
1: Let t be a matrix with dimensions $n \times m$.
for $i=1$ to n do
for $j=1$ to m do if $p_{i} \neq q_{j}$ then $t(i, j)=1$ else $t(i, j)=0$
Let D be a matrix with dimensions $(n+1) \times(m+1)$ initialized with zeros.
for $i=0$ to n do $D(i, 0)=i$
for $j=0$ to m do $D(0, j)=j$
for $i=1$ to n do
for $j=1$ to m do
11:

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+t(i, j)
\end{array}\right.
$$

12: return $D(n, m)$

Preamble computation

Goal: to compute $\llbracket t(i, j) \rrbracket_{2}$.

- Nucleotide representation:

$$
A \mapsto 00, \quad C \mapsto 01, \quad G \mapsto 10, \quad \text { and } \quad T \mapsto 11
$$

Preamble computation

Goal: to compute $\llbracket t(i, j) \rrbracket_{2}$.

- Nucleotide representation:

$$
A \mapsto 00, \quad C \mapsto 01, \quad G \mapsto 10, \quad \text { and } \quad T \mapsto 11
$$

- Nucleotide secret-sharing: $\llbracket N \rrbracket_{2} \stackrel{\text { def }}{=}\left\langle\llbracket b_{0} \rrbracket_{2}, \llbracket b_{1} \rrbracket_{2}\right\rangle$.
- The XOR can be extended naturally: $\llbracket N \rrbracket \oplus \llbracket N^{\prime} \rrbracket \stackrel{\text { def }}{=}\left\langle\llbracket b_{0} \rrbracket_{2} \oplus \llbracket b_{0}^{\prime} \rrbracket_{2}, \llbracket b_{1} \rrbracket_{2} \oplus \llbracket b_{1}^{\prime} \rrbracket_{2}\right\rangle$.

Preamble computation

Goal：to compute $\llbracket t(i, j) \rrbracket_{2}$ ．
－Nucleotide representation：

$$
A \mapsto 00, \quad C \mapsto 01, \quad G \mapsto 10, \quad \text { and } \quad T \mapsto 11
$$

－Nucleotide secret－sharing：$\llbracket N \rrbracket_{2} \stackrel{\text { def }}{=}\left\langle\llbracket b_{0} \rrbracket_{2}, \llbracket b_{1} \rrbracket_{2}\right\rangle$ ．
－The XOR can be extended naturally：$\llbracket N \rrbracket \oplus \llbracket N^{\prime} \rrbracket \stackrel{\text { def }}{=}\left\langle\llbracket b_{0} \rrbracket_{2} \oplus \llbracket b_{0}^{\prime} \rrbracket_{2}, \llbracket b_{1} \rrbracket_{2} \oplus \llbracket b_{1}^{\prime} \rrbracket_{2}\right\rangle$ ．
－Equality test：

$$
\llbracket N \stackrel{?}{=} N^{\prime} \rrbracket_{2}=1-\left[\left(\llbracket b_{0} \rrbracket_{2}+\llbracket b_{0}^{\prime} \rrbracket_{2}\right)+\left(\llbracket b_{1} \rrbracket_{2}+\llbracket b_{1}^{\prime} \rrbracket_{2}\right)+\left(\llbracket b_{0} \rrbracket_{2}+\llbracket b_{0}^{\prime} \rrbracket_{2}\right) \cdot\left(\llbracket b_{1} \rrbracket_{2}+\llbracket b_{1}^{\prime} \rrbracket_{2}\right)\right] .
$$

－Communication cost： $4 n m$ bits（without considering active security mechanisms）．

Arithmetic section I

We use daBits $[$ RW19; Aly +19$]$ to transform $\llbracket t(i, j) \rrbracket_{2}$ into $\llbracket t(i, j) \rrbracket_{2^{k}}$.
Goal: to compute $\llbracket D(n, m) \rrbracket_{2^{k}}$

We have that

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+t(i, j)
\end{array}\right.
$$

Arithmetic section II

Applying the equation recursively, we end up with

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-2, j)+2 \\
D(i-2, j-1)+t(i-1, j)+1 \\
D(i-2, j-1)+3 \\
D(i-1, j-2)+3 \\
D(i-2, j-2)+t(i-1, j-1)+2 \\
D(i, j-2)+2 \\
D(i-1, j-2)+t(i, j-1)+1 \\
D(i-2, j-1)+t(i, j)+1 \\
D(i-1, j-2)+t(i, j)+1 \\
D(i-2, j-2)+t(i, j)+t(i-1, j-1)
\end{array}\right.
$$

Arithmetic section III

Reducing the redundant terms, we obtain that

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-2, j)+2 \\
D(i-2, j-1)+t(i-1, j)+1 \\
D(i-2, j-1)+t(i, j)+1 \\
D(i-2, j-2)+t(i-1, j-1)+t(i, j) \\
D(i, j-2)+2 \\
D(i-1, j-2)+t(i, j-1)+1 \\
D(i-1, j-2)+t(i, j)+1
\end{array}\right.
$$

Later, we will present an algorithm to do this!

Arithmetic section IV

$$
\begin{aligned}
& \mathcal{T} \stackrel{\text { def }}{=}\left\{D_{i-\tau, j-\tau}, D_{i-\tau, j-\tau+1}, \ldots, D_{i-\tau, j}\right\}, \mathcal{B} \stackrel{\text { def }}{=}\left\{D_{i, j-\tau}, D_{i, j-\tau+1}, \ldots, D_{i, j}\right\}, \\
& \mathcal{L} \stackrel{\text { def }}{=}\left\{D_{i-\tau, j-\tau}, D_{i-\tau+1, j-\tau}, \ldots, D_{i, j-\tau}\right\}, \mathcal{R} \stackrel{\text { def }}{=}\left\{D_{i-\tau, j}, D_{i-\tau+1, j}, \ldots, D_{i, j}\right\} .
\end{aligned}
$$

Arithmetic section \vee

$D_{0,0}$																		

Arithmetic section VI

To compute $\llbracket D(i, j) \rrbracket_{2^{k}}$, we can use the protocol $\operatorname{Min}_{q}[\mathrm{Dam}+19$; Tof07]. The protocol computes securely the minimum of a list of q elements using:

- $O\left(\log _{2} q\right) \cdot\left(c_{r}+2\right)$ online rounds (c_{r} is the number of rounds for one comparison),
- $q-1$ comparisons, and
- $2 q-2$ multiplications.

Warning!

Comparisons and multiplications need pre-processing material.

Arithmetic section VII

Using the protocol Min_{7},

$$
\llbracket D(i, j) \rrbracket_{2^{k}}=\operatorname{MiN}_{7}\left\{\begin{array}{l}
\llbracket D(i-2, j) \rrbracket_{2^{k}}+2 \\
\llbracket D(i-2, j-1) \rrbracket_{2^{k}}+\llbracket t(i-1, j) \rrbracket_{2^{k}}+1 \\
\llbracket D(i-2, j-1) \rrbracket_{2^{k}}+\llbracket t(i, j) \rrbracket_{2^{k}}+1 \\
\llbracket D(i-2, j-2) \rrbracket_{2^{k}}+\llbracket t(i-1, j-1) \rrbracket_{2^{k}}+\llbracket t(i, j) \rrbracket_{2^{k}} \\
\llbracket D(i, j-2) \rrbracket_{2^{k}}+2 \\
\llbracket D(i-1, j-2) \rrbracket_{2^{k}}+\llbracket t(i, j-1) \rrbracket_{2^{k}}+1 \\
\llbracket D(i-1, j-2) \rrbracket+\llbracket t(i, j) \rrbracket_{2^{k}}+1
\end{array}\right.
$$

The same holds for computing $\llbracket D(i-1, j) \rrbracket_{2^{k}}$ and $\llbracket D(i, j-1) \rrbracket_{2^{k}}$ using the Min 4 protocol.

Arithmetic section VIII

Fact

The number of formulas needed to compute $D(i, j)$ is $O\left(\tau \cdot 2^{3 \tau}\right)$ (we will see this later).
Fact
All the positions in $\mathcal{R} \cup \mathcal{B}$ inside a $(\tau+1)$-box can be computed in parallel.

The arithmetic part can be computed in:

- $O\left(\frac{n m}{\tau^{2}} \cdot\left(3 \tau+\log _{2} \tau\right) \cdot\left(c_{r}+2\right)\right)$ rounds,
- $O\left(\frac{n m}{\tau^{2}} \cdot\left(\tau^{2} \cdot 2^{3 \tau}-1\right)\right)$ comparisons, and
- $O\left(\frac{n m}{\tau^{2}} \cdot\left(\tau^{2} \cdot 2^{3 \tau+1}-2\right)\right)$ multiplications.

Removing Redundant Formulas I

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-2, j)+2 \\
D(i-2, j-1)+t(i-1, j)+1 \\
D(i-2, j-1)+3 \\
D(i-1, j-2)+3 \\
D(i-2, j-2)+t(i-1, j-1)+2 \\
D(i, j-2)+2 \\
D(i-1, j-2)+t(i, j-1)+1 \\
D(i-2, j-1)+t(i, j)+1 \\
D(i-1, j-2)+t(i, j)+1 \\
D(i-2, j-2)+t(i, j)+t(i-1, j-1)
\end{array}\right.
$$

Removing Redundant Formulas II

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-2, j)+2 \\
D(i-2, j-1)+t(i-1, j)+1 \\
D(i-2, j-1)+3 \\
D(i-1, j-2)+3 \\
D(i-2, j-2)+t(i-1, j-1)+2 \\
D(i, j-2)+2 \\
D(i-1, j-2)+t(i, j-1)+1 \\
D(i-2, j-1)+t(i, j)+1 \\
D(i-1, j-2)+t(i, j)+1 \\
D(i-2, j-2)+t(i, j)+t(i-1, j-1)
\end{array}\right.
$$

$D(i-2, j-1)+3$ can be deleted safely!

The Depedency Graph I

$$
D(i, j)=\min \left\{\begin{array}{l}
D(i-1, j)+1 \\
D(i, j-1)+1 \\
D(i-1, j-1)+t(i, j)
\end{array}\right.
$$

A similar abstraction was considered by [Ukk85] without edge coloring.

The Depedency Graph II

- A path in the graph induces a formula.
- Let P and Q be two paths.
- $r_{P, Q}$: number of red edges in P that are not in Q.
- b_{P} : number of black edges in the path P.

Algorithm for formula generation

- We defined a notion of "optimality" of a set of formulas.
- Correctness: $r_{Q, P}+b_{Q} \leq b_{P}$.

Algorithm for formula generation

- We defined a notion of "optimality" of a set of formulas.
- Correctness: $r_{Q, P}+b_{Q} \leq b_{P}$.

Input: a dependency graph G. Two endpoints $U \in \mathcal{T} \cup \mathcal{L}$ and $W \in \mathcal{B} \cup \mathcal{R}$.

Output: an "optimal" set of paths \mathcal{S} to compute the edit distance correctly.

```
Generate the set \(\mathcal{P}_{U, W}\).
\(\mathcal{S} \leftarrow \emptyset\).
    for \(P \in \mathcal{P}_{U, W}\) do
        \(r \leftarrow\) True
        for \(Q \in \mathcal{P}_{U, W} \backslash\{P\}\) do
            if \(r_{Q, P}+b_{Q} \leq b_{P}\) then
                \(r \leftarrow\) False
                break
        if \(r=\) True then
                        Append \(P\) to \(\mathcal{S}\)
    return \(\mathcal{S}\)
```


Upper Bound for the Number of Formulas

Delanoy graph

$$
\mathcal{D}(l, s)=\sum_{i=0}^{\min \{l, s\}}\binom{l}{i}\binom{s}{i} \cdot 2^{i}
$$

An upper bound for the number of formulas is

$$
\sum_{k=1}^{\tau}[\mathcal{D}(\tau, \tau-k)+\mathcal{D}(\tau-k, \tau)]+\mathcal{D}(\tau, \tau)=O\left(\tau \cdot 2^{3 \tau}\right)
$$

Experiments

- MP-SDPZ framework [Kel20].
- AWS EC2 instance of type c6a.4xlarge.
- We simulated a LAN architecture:
- Bandwidth: 1.6 GBps.
- Latency: 0.3 milliseconds.
- We consider a bit-length of 16 , which allows 16 -bit integer computations.

Effect of the Box Size τ

(a) No network limits.

-	Active - with pre-processing
-	Passive - with pre-processing
\square	Active - just online
\square	Passive - just online
\square	

(b) LAN.

GC-Based vs. SSS-Based Protocols

Network	Security	Protocol	Time [s]	Data sent [MB]
No limit	Passive	Yao's GC	2.6	345.8
		Semi2 ${ }^{k}$	4.9	113.1
	Active	BMR-MASCOT	5,968.6	2.09×10^{6}
		SPDZ ${ }^{\text {k }}$	140.1	14,893.8
LAN	Passive	Yao's GC	2.7	345.8
		Semi2 ${ }^{k}$	103.0	113.1
	Active	BMR-MASCOT	9,034.0	2.09×10^{6}
		$\mathrm{SPDZ}_{2^{k}}$	368.5	14,893.8

Here, we used $\tau=1$ for GC-based protocols and $\tau=3$ for SSS-based protocols.

Additional Results

Comparison with field-based protocol
On a 1020 long DNA-chain Semi2 ${ }^{k}$ sends 85% less data than Semi and $S P D \mathbb{Z}_{2^{k}}$ sends 86% less data than MASCOT [KOS16].

Additional Results

Comparison with field-based protocol
On a 1020 long DNA-chain Semi2 ${ }^{k}$ sends 85% less data than Semi and $S P D \mathbb{Z}_{2^{k}}$ sends 86% less data than MASCOT [KOS16].

Comparison with homomorphic encryption solutions
Cheon et al. [CKL15]: DNA chains of length 8 at 80 bits of security.

- Key generation: 27.54 seconds.
- Encryption: 16.45 seconds.
- Computation: 27.5 seconds

Additional Results

Comparison with field-based protocol
On a 1020 long DNA-chain Semi2 ${ }^{k}$ sends 85% less data than Semi and $S P D \mathbb{Z}_{2^{k}}$ sends 86% less data than MASCOT [KOS16].

Comparison with homomorphic encryption solutions
Cheon et al. [CKL15]: DNA chains of length 8 at 80 bits of security.

- Key generation: 27.54 seconds.
- Encryption: 16.45 seconds.
- Computation: 27.5 seconds

In our case, considering both the pre-processing and the online phase on a LAN, using $\tau=2$:

- Semi2 ${ }^{k}$: 0.3 seconds.
- $\mathrm{SPDZ}_{2^{k}}: 5.92$ seconds

Additional Results

Comparison with field-based protocol
On a 1020 long DNA-chain Semi2 ${ }^{k}$ sends 85% less data than Semi and $S P D \mathbb{Z}_{2^{k}}$ sends 86% less data than MASCOT [KOS16].

Comparison with homomorphic encryption solutions
Cheon et al. [CKL15]: DNA chains of length 8 at 80 bits of security.

- Key generation: 27.54 seconds.
- Encryption: 16.45 seconds.
- Computation: 27.5 seconds

In our case, considering both the pre-processing and the online phase on a LAN, using $\tau=2$:

- Semi2 ${ }^{k}$: 0.3 seconds.
- $\mathrm{SPDZ}_{2^{k}}: 5.92$ seconds

For chains of length 100 :

- Cheon et al. [CKL15]: 1 day 5 hours (62-bit security).
- Our work: 96.69 seconds on a LAN using the $\mathrm{SPD}_{2}{ }^{k}$.

Thanks
 Gracias
 Obrigado

Bibliography I

[Aly +19$] \quad$ Abdelrahaman Aly et al. Zaphod: Efficiently Combining LSSS and Garbled Circuits in SCALE. Cryptology ePrint Archive, Paper 2019/974. 2019.
[CKL15] Jung Hee Cheon, Miran Kim, and Kristin E. Lauter. "Homomorphic Computation of Edit Distance". In: Financial Cryptography Workshops. Vol. 8976. LNCS. Springer, 2015, pp. 194-212.
[Cra+18] Ronald Cramer et al. "SPDZ ${ }_{2}^{k}$: Efficient MPC mod 2^{k} for Dishonest Majority". In: CRYPTO (2). Vol. 10992. LNCS. Springer, 2018, pp. 769-798.
[Dam+19] Ivan Damgård et al. "New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning". In: IEEE Symposium on Security and Privacy. IEEE Computer Society, 2019, pp. 1102-1120.
[Esc+20] Daniel Escudero et al. "Improved Primitives for MPC over Mixed Arithmetic-Binary Circuits" . In: CRYPTO (2). Vol. 12171. LNCS. Springer, 2020, pp. 823-852.
[Fre+15] Tore Kasper Frederiksen et al. "A Unified Approach to MPC with Preprocessing Using OT". In: ASIACRYPT (1). Vol. 9452. LNCS. Springer, 2015, pp. 711-735.

Bibliography II

[Kel20] Marcel Keller. "MP-SPDZ: A Versatile Framework for Multi-Party Computation". In: CCS. ACM, 2020, pp. 1575-1590.
[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. "MASCOT: Faster Malicious Arithmetic Secure Computation with Oblivious Transfer". In: CCS. ACM, 2016, pp. 830-842.
[RW19] Dragos Rotaru and Tim Wood. "MArBled Circuits: Mixing Arithmetic and Boolean Circuits with Active Security". In: INDOCRYPT. Vol. 11898. LNCS. Springer, 2019, pp. 227-249.
[Tof07] Tomas Toft. "Primitives and Applications for Multi-party Computation". PhD thesis. Aarhus University, 2007.
[Ukk85] Esko Ukkonen. "Algorithms for Approximate String Matching". In: Inf. Control. 64.1-3 (1985), pp. 100-118.
[WF74] Robert A. Wagner and Michael J. Fischer. "The String-to-String Correction Problem". In: J. ACM 21.1 (1974), pp. 168-173.

