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Overview

▶ Edit distance and its privacy concerns

▶ Wagner-Fischer algorithm (WF)

▶ Our solution:
▶ Division of WF into two sections: preamble and arithmetic section.
▶ Preamble computation
▶ Arithmetic section
▶ Automatic generation of formulas for the arithmetic section

▶ Experiments



Edit Distance

▶ Minimum number of insertions, deletions, and changes.

▶ Wagner-Fischer algorithm [WF74].



Privacy Concerns in Edit Distance

▶ The edit distance is used in genomics to compare two DNA chains.

▶ Revealing DNA chains have risks for the chain owner:
▶ Re-identification.
▶ Attribute disclosure attacks via DNA.
▶ Ancestry identification.



Privacy-Preserving Setup

Warning!
One of the parties can behave maliciously to steal the string of the other party.



Our Contributions

Current solutions:

▶ Garbled circuits (GC)

▶ Homomorphic encryption (HE)

But what about protocols based on secret-sharing schemes (SS)?

Our approach:

▶ Two-party protocol.

▶ Separation of the Wagner-Fischer algorithm into two sections:
▶ Preamble: Tinier [Fre+15] – binary domain.
▶ Arithmetic part: SPDZ2k [Cra+18] and edaBits [Esc+20] – arithmetic domain.

▶ Mixed-circuit solution: daBits [RW19; Aly+19]

▶ The arithmetic part is computed in blocks. Generalization of Cheon et al. [CKL15].
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The Wagner-Fischer Algorithm [WF74]

Input: two DNA chains P = [p1, . . . , pn] and Q = [q1, . . . , qm].

1: Let t be a matrix with dimensions n×m.
2: for i = 1 to n do
3: for j = 1 to m do
4: if pi ̸= qj then t(i, j) = 1
5: else t(i, j) = 0

6: Let D be a matrix with dimensions (n+ 1)× (m+ 1) initialized with zeros.
7: for i = 0 to n do D(i, 0) = i

8: for j = 0 to m do D(0, j) = j

9: for i = 1 to n do
10: for j = 1 to m do
11:

D(i, j) = min


D(i− 1, j) + 1,
D(i, j − 1) + 1,
D(i− 1, j − 1) + t(i, j)

12: return D(n,m)



Preamble computation

Goal: to compute Jt(i, j)K2.

▶ Nucleotide representation:

A 7→ 00, C 7→ 01, G 7→ 10, and T 7→ 11

▶ Nucleotide secret-sharing: JNK2
def
= ⟨Jb0K2, Jb1K2⟩.

▶ The XOR can be extended naturally: JNK⊕ JN ′K def
= ⟨Jb0K2 ⊕ Jb′0K2, Jb1K2 ⊕ Jb′1K2⟩.

▶ Equality test:

r
N

?
= N ′

z

2
= 1− [(Jb0K2 + Jb′0K2) + (Jb1K2 + Jb′1K2) + (Jb0K2 + Jb′0K2) · (Jb1K2 + Jb′1K2)] .

▶ Communication cost: 4nm bits (without considering active security mechanisms).
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Arithmetic section I

We use daBits [RW19; Aly+19] to transform Jt(i, j)K2 into Jt(i, j)K2k .

Goal: to compute JD(n,m)K2k

We have that

D(i, j) = min

 D(i− 1, j) + 1
D(i, j − 1) + 1
D(i− 1, j − 1) + t(i, j)



Arithmetic section II

Applying the equation recursively, we end up with

D(i, j) = min



D(i− 2, j) + 2
D(i− 2, j − 1) + t(i− 1, j) + 1
D(i− 2, j − 1) + 3
D(i− 1, j − 2) + 3
D(i− 2, j − 2) + t(i− 1, j − 1) + 2
D(i, j − 2) + 2
D(i− 1, j − 2) + t(i, j − 1) + 1
D(i− 2, j − 1) + t(i, j) + 1
D(i− 1, j − 2) + t(i, j) + 1
D(i− 2, j − 2) + t(i, j) + t(i− 1, j − 1)



Arithmetic section III

Reducing the redundant terms, we obtain that

D(i, j) = min



D(i− 2, j) + 2
D(i− 2, j − 1) + t(i− 1, j) + 1
D(i− 2, j − 1) + t(i, j) + 1
D(i− 2, j − 2) + t(i− 1, j − 1) + t(i, j)
D(i, j − 2) + 2
D(i− 1, j − 2) + t(i, j − 1) + 1
D(i− 1, j − 2) + t(i, j) + 1

Later, we will present an algorithm to do this!



Arithmetic section IV

T def
= {Di−τ,j−τ , Di−τ,j−τ+1, . . . , Di−τ,j} , B def

= {Di,j−τ , Di,j−τ+1, . . . , Di,j} ,

L def
= {Di−τ,j−τ , Di−τ+1,j−τ , . . . , Di,j−τ} , R def

= {Di−τ,j , Di−τ+1,j , . . . , Di,j} .



Arithmetic section V



Arithmetic section VI

To compute JD(i, j)K2k , we can use the protocol Minq [Dam+19; Tof07]. The protocol
computes securely the minimum of a list of q elements using:

▶ O(log2 q) · (cr + 2) online rounds (cr is the number of rounds for one comparison),

▶ q − 1 comparisons, and

▶ 2q − 2 multiplications.

Warning!
Comparisons and multiplications need pre-processing material.



Arithmetic section VII

Using the protocol Min7,

JD(i, j)K2k = Min7



JD(i− 2, j)K2k + 2
JD(i− 2, j − 1)K2k + Jt(i− 1, j)K2k + 1
JD(i− 2, j − 1)K2k + Jt(i, j)K2k + 1
JD(i− 2, j − 2)K2k + Jt(i− 1, j − 1)K2k + Jt(i, j)K2k
JD(i, j − 2)K2k + 2
JD(i− 1, j − 2)K2k + Jt(i, j − 1)K2k + 1
JD(i− 1, j − 2)K + Jt(i, j)K2k + 1

The same holds for computing JD(i− 1, j)K2k and JD(i, j − 1)K2k using the Min4 protocol.



Arithmetic section VIII

Fact
The number of formulas needed to compute D(i, j) is O(τ · 23τ ) (we will see this later).

Fact
All the positions in R∪ B inside a (τ + 1)-box can be computed in parallel.

The arithmetic part can be computed in:

▶ O
(
nm
τ2 · (3τ + log2 τ) · (cr + 2)

)
rounds,

▶ O
(
nm
τ2 · (τ2 · 23τ − 1)

)
comparisons, and

▶ O
(
nm
τ2 · (τ2 · 23τ+1 − 2)

)
multiplications.



Removing Redundant Formulas I

D(i, j) = min
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Removing Redundant Formulas II

D(i, j) = min



D(i− 2, j) + 2
D(i− 2, j − 1) + t(i− 1, j) + 1
D(i− 2, j − 1) + 3
D(i− 1, j − 2) + 3
D(i− 2, j − 2) + t(i− 1, j − 1) + 2
D(i, j − 2) + 2
D(i− 1, j − 2) + t(i, j − 1) + 1
D(i− 2, j − 1) + t(i, j) + 1
D(i− 1, j − 2) + t(i, j) + 1
D(i− 2, j − 2) + t(i, j) + t(i− 1, j − 1)

D(i− 2, j − 1) + t(i− 1, j) + 1 ≤ D(i− 2, j − 1) + 3

D(i− 2, j − 1) + 3 can be deleted safely!



The Depedency Graph I

D(i, j) = min


D(i− 1, j) + 1
D(i, j − 1) + 1
D(i− 1, j − 1) + t(i, j)

A similar abstraction was considered by [Ukk85] without edge coloring.



The Depedency Graph II

▶ A path in the graph induces a formula.

▶ Let P and Q be two paths.
▶ rP,Q: number of red edges in P that are not in Q.
▶ bP : number of black edges in the path P .



Algorithm for formula generation

▶ We defined a notion of “optimality” of a set of formulas.

▶ Correctness: rQ,P + bQ ≤ bP .

Input: a dependency graph G. Two endpoints
U ∈ T ∪ L and W ∈ B ∪R.

Output: an “optimal” set of paths S to
compute the edit distance correctly.

1: Generate the set PU,W .
2: S ← ∅.
3: for P ∈ PU,W do
4: r ← True
5: for Q ∈ PU,W \ {P} do
6: if rQ,P + bQ ≤ bP then
7: r ← False
8: break
9: if r = True then

10: Append P to S
11: return S
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Upper Bound for the Number of Formulas

Delanoy graph

D(l, s) =
min{l,s}∑

i=0

(
l

i

)(
s

i

)
· 2i.

An upper bound for the number of formulas is

τ∑
k=1

[D(τ, τ − k) +D(τ − k, τ)]+D(τ, τ) = O(τ ·23τ )



Experiments

▶ MP-SDPZ framework [Kel20].

▶ AWS EC2 instance of type c6a.4xlarge.

▶ We simulated a LAN architecture:
▶ Bandwidth: 1.6 GBps.
▶ Latency: 0.3 milliseconds.

▶ We consider a bit-length of 16, which allows 16-bit integer computations.



Effect of the Box Size τ
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GC-Based vs. SSS-Based Protocols

Network Security Protocol Time [s] Data sent [MB]

No limit
Passive

Yao’s GC 2.6 345.8
Semi2k 4.9 113.1

Active
BMR-MASCOT 5,968.6 2.09× 106

SPDZ2k 140.1 14,893.8

LAN
Passive

Yao’s GC 2.7 345.8
Semi2k 103.0 113.1

Active
BMR-MASCOT 9, 034.0 2.09× 106

SPDZ2k 368.5 14,893.8

Here, we used τ = 1 for GC-based protocols and τ = 3 for SSS-based protocols.



Additional Results

Comparison with field-based protocol
On a 1020 long DNA-chain Semi2k sends 85% less data than Semi and SPDZ2k sends 86%
less data than MASCOT [KOS16].

Comparison with homomorphic encryption solutions
Cheon et al. [CKL15]: DNA chains of length 8 at 80 bits of security.

▶ Key generation: 27.54 seconds.

▶ Encryption: 16.45 seconds.

▶ Computation: 27.5 seconds

In our case, considering both the pre-processing and the online phase on a LAN, using τ = 2:

▶ Semi2k: 0.3 seconds.

▶ SPDZ2k : 5.92 seconds

For chains of length 100:

▶ Cheon et al. [CKL15]: 1 day 5 hours (62-bit security).

▶ Our work: 96.69 seconds on a LAN using the SPDZ2k .
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