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Qualcomm France SARL, Valbonne, France
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Elliptic curves and isogenies

An elliptic curve can (usually) be written in the form

E : y2 = x3 + ax + b.

Points on elliptic curves form a group under addition.

Elliptic curves are symmetric about the x-axis, so

(x , y) ∈ E =⇒ (x ,−y) ∈ E .

Often we can restrict to using only x-coordinates.

Valerie Gilchrist Fast and Frobenius October 3, 2023 2 / 18



Elliptic curves and isogenies

An elliptic curve can (usually) be written in the form

E : y2 = x3 + ax + b.

Points on elliptic curves form a group under addition.

Elliptic curves are symmetric about the x-axis, so

(x , y) ∈ E =⇒ (x ,−y) ∈ E .

Often we can restrict to using only x-coordinates.

Valerie Gilchrist Fast and Frobenius October 3, 2023 2 / 18



Elliptic curves and isogenies

An elliptic curve can (usually) be written in the form

E : y2 = x3 + ax + b.

Points on elliptic curves form a group under addition.

Elliptic curves are symmetric about the x-axis, so

(x , y) ∈ E =⇒ (x ,−y) ∈ E .

Often we can restrict to using only x-coordinates.

Valerie Gilchrist Fast and Frobenius October 3, 2023 2 / 18



Elliptic curves and isogenies

An elliptic curve can (usually) be written in the form

E : y2 = x3 + ax + b.

Points on elliptic curves form a group under addition.

Elliptic curves are symmetric about the x-axis, so

(x , y) ∈ E =⇒ (x ,−y) ∈ E .

Often we can restrict to using only x-coordinates.

Valerie Gilchrist Fast and Frobenius October 3, 2023 2 / 18



Elliptic curves and isogenies

An isogeny is a rational mapping between two elliptic curves.

ϕ

It is believed to be classically and quantumly hard to find an isogeny between two fixed elliptic
curves.
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Motivation

CSIDH is a key exchange scheme using an isogeny group action.

SQISign is a signature candidate in the NIST competition, using isogenies.

Some new isogeny protocols from 2023 :

FESTA, SQISign HD

M(D)-SIDH, binSIDH

SCALLOP

CSI-Otter, CSI-SharK

CAPYBARA, TSUBAKI

By speeding up the computation of isogenies, we can speed up protocols that rely on them.
Cryptanalysis also benefits from improved computation times.
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Computing isogenies
Vélu gives explicit equations for computing isogenies, given a generating point for its kernel

⟨P⟩ = ker ϕ.

The kernel polynomial of an isogeny is used in these formulæ,
given by

D(X ) :=
∏
G∈S

(X − x(G ))

where S ⊂ ⟨P⟩ is any subset such that

S ∩ −S = ∅ and S ∪ −S = ⟨P⟩ \ {0} .

i.e. S is the set of multiples of P up to negation.
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Evaluating the kernel polynomial
Our computational building blocks consist of point doubling and adding.

xDBL :x(P) 7→ x(2P)

xADD :
(
x(P), x(Q), x(P − Q)

)
7→ x(P + Q)

Note, in point addition we require more information in order to differentiate between (P + Q)
and −(P + Q).

Complexity costs:

xADD xDBL

4M+ 2S 2M+ 2S+ 1C

Here M, S, C represent multiplication, squaring, and multiplication by a curve constant,
respectively.
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Evaluating the kernel polynomial

Take ord(P) = 13.
We want to choose a set S ⊂ ⟨P⟩, that contains all multiples of P up to negation (excluding
the identity) for use in our kernel polynomial.

Some classic examples are taking the first half.

P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P

P 2P 3P 4P 5P 6P

Valerie Gilchrist Fast and Frobenius October 3, 2023 7 / 18



Evaluating the kernel polynomial

Take ord(P) = 13.
We want to choose a set S ⊂ ⟨P⟩, that contains all multiples of P up to negation (excluding
the identity) for use in our kernel polynomial.

Some classic examples are taking the first half.

P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P

P 2P 3P 4P 5P 6P

Valerie Gilchrist Fast and Frobenius October 3, 2023 7 / 18



Evaluating the kernel polynomial

Take ord(P) = 13.
We want to choose a set S ⊂ ⟨P⟩, that contains all multiples of P up to negation (excluding
the identity) for use in our kernel polynomial.

Some classic examples are taking the first half.

P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P

P 2P 3P 4P 5P 6P

Valerie Gilchrist Fast and Frobenius October 3, 2023 7 / 18



Evaluating the kernel polynomial

For example, choose

S = {P, [2]P, [3]P, . . . , [(ord(P)− 1)/2]P}

This method would use one xDBL to get [2]P, and the rest xADD’s.
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Fast(er)...

Valerie Gilchrist Fast and Frobenius October 3, 2023 9 / 18



Evaluating the kernel polynomial

Another approach...

P 2P 4P 8P 16P3P 6P 12P 11P 9P 5P 10P 7P

×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2 ×2

This uses all xDBL’s.

Here, 2 is primitive modulo 13, but this is not always the case.
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Generalizing to other ℓ

Example. Take ord(P) = 17. Here, 2 is not primitive.

P 2P 4P 8P 16P = −P

×2 ×2 ×2 ×2

3P 2 · 3P 4 · 3P 8 · 3P
×2 ×2 ×2
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In summary

Formalizing...

Let

Mℓ := (Z/ℓZ)×/⟨±1⟩

For ℓ < 20000 we have that

56% satisfy Mℓ = ⟨2⟩
83% satisfy Mℓ = ⟨2, 3⟩ =

⊔(
3i · ⟨2⟩

)
The remaining ℓ can be dealt with in a case-by-case basis.
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...and Frobenius
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Using extension fields

It is possible for the kernel generator of an isogeny to be taken from an extension field, E (Fqk ).

We can still use classic Vélu, but the arithmetic over the extension fields makes it very costly.

We will try to use Frobenius: an endomorphism that maps

(x , y) 7→ (xq, yq)
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Exploiting the action of Frobenius

P is in E (Fqk ).

⟨P⟩ is Galois stable, so Frobenius acts as an eigenvalue, λ, on ⟨P⟩.

P 7→ π(P) 7→ π2(P) 7→ · · · πk−1(P)

P 7→ λP 7→ λ2P 7→ · · · λk−1P
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Exploiting the action of Frobenius

Take ord(P) = 13 and k = 3.
Here π acts as multiplication by 3 on ⟨P⟩:

P 2P 3P 4P 5P 6P 7P 8P 9P 10P 11P 12P

P 3P 9P 2P 6P 5P 4P 12P 10P 8P 11P 7P

negation
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The (low) cost of Frobenius

Note, the ideal way to implement Frobenius depends on the context, but can generally be
done for cheap.

Example. If k = 2 and Fq2 = Fq(
√
∆), then it maps [a, b] to [a,−b], so F ≈ 0.

In the worst case, for k ≤ 12, F ≈ M.
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Experimental results

ℓ k ′ M S C a F Algorithm

13
any 30 12 15 54 0 Costello–Hisil
1 22 12 19 46 0 This work
3 10 4 7 14 4 This work

19

any 48 18 21 84 0 Costello–Hisil
1 34 18 28 70 0 This work
3 14 6 10 22 4 This work
9 18 2 4 6 16 This work

23
any 60 22 25 104 0 Costello–Hisil
1 42 22 34 86 0 This work
11 22 2 4 6 20 This work

Cost of evaluating an ℓ-isogeny at a
single point over Fq, using a kernel
generator with x-coordinate in Fqk′ .

In this table,
M = multiplications,
S = squares,
C = multiplications of elements of
Fqk′ by elements of Fq (including,
but not limited to, curve constants),
a = adds,
F = calls to Frobenius.
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