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A privacy problem

S =1{1,3,4,7,9,13,19,21} Public set

Alice: the prover Bob: the verifier

4 Does Alice have a number

) in S?
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Alice (Enc; (7, rand)) Bob (Enc)
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Accept or reject
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S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}
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« Completeness: honest prover always convinces the verifier.

S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}



Security

Malicious fij
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- « Completeness: honest prover always convinces the verifier.

* Soundness: malicious prover cannot convince the verifier.

S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}
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« Completeness: honest prover always convinces the verifier.
* Soundness: malicious prover cannot convince the verifier.
« Zero-knowledge: the verifier learns nothing about the witness

S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}



Set Memlkenstbe shi NI1ZK

Trusted third party Non-Interactive
Crs
Alice (crs, Enc; (x, rand)) x &S Bob (crs, Enc)
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Completeness, Soundness, Zero-knowledge

Succinctness (constant proof size and verifier complexity)



Set (non)-Membership NIZK
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( 45 )xESor X &S )

N : :.
“

Completeness, Soundness, Zero-knowledge

Succinctness (constant proof size and verifier complexity)



Set Membership NIZK  With Signatures

e crs explicitly depends on the set S.

* It seems to disallow Non-membership



Accumulators  Non ZK Set (Non-)Membership

S = {al, e am}

¢ Zs = commit(S, apk)
crs = Zs, apk
Alice (crs, x) Bob (crs)
i X, ¢ ey,

Memb.verify(x, ¢, Zs, apk) = 1 ) Y CcS
Non.Memb.verify(x, ¢, Zs,apk) =1 o) x ¢ S
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Set Membership NIZK  With Accumulators

S = {al, e am}
¢ Zs = commit(S, apk)
crs = apk
+ NIZK system crs
Alice (crs, Enc; (x, rand)) Bob (crs, Enc)
‘:“[ 77:, EnCd) ’

Prove that

I\/Iemb.verify(Enc, Ency, Zs, apk) =1
Non.l\/lemb.verify(Enc, Encg, ¢, Zs, apk) =1
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* crs depends only from |S]|.

* It allows Non-membership proof
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Falsifiable Set-membership (without ROM)

Constructions

Primitives

Signature or
accumulators

Communication
and
computational
complexity

Assumptions




Cryptographic groups

* Bracket notation for additive groups
G =(9)=1[1],
[x] € G: [x] = x[1] (= x g9),

« Hardness assumptions

1. x « |x] is hard (discrete logarithm assumption)
2. |xy] « (Ix], [y]) is hard (CDH assumption)



Bilinear Pairing Groups
« Three additive groups cryptographic groups

(png'g21gTJ[ ] [ ]2:)

p is the order of each group
1 x|y - [yl =[x ylr
2. |x]{ e [x], is hard (type lll pairings: no efficient
isomorphism between groups)



Groth-Sahai

Set Membership NIZKs

Underlying primitive + GS crs

Ccrs

ver(crs,x,m) = 0
Primitive PPE verification

+
Groth-Sahai for ZK
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Pairing-based Set-membership (without ROM)
Constructions AN11 DGP+19

Primitives AN accumulator BB signatures
Groth-Sahai Groth-Sahai

Signature or
accumulators

Communication
and
computational
complexity

Assumptions




A matrix C is a a QDR (Quasi-
Determinantal Representation) of a
polynomial F it

1. Affine map: each entry of C is an affine

0
function "%ff@”/b,b
- - N
2. F -rank: Det(C (x)) = F(x) S@’?f&;”fe/
/O/)

3. First column dependence
* Lokcr = {[ct],: 31, %, Ency,(%;7r) = [ct]; A det(C (%)) = 0}

ElGamal (linear homomorphic)



i [CLPO21] NIZK

Prover ([e],, [ct],, T, X) ¥ Verifier (lels, [ct]y)

Compute y

ct,| < Enc,,(y) .
| y]l P [cty]l, [5,2]2 Accept if

7l 11+ [C@) - [4] =1

Check encrypted version

Compute [5, 2]2

First column dependence

. ) messssss)  Soundness
yin[]y, ein[];
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CLPO Set Membership NIZKs

Determinantal accumulator key(apk) + [e],
o> ; e
711 - [112 + [(C (x, )]s - [5]2 = 0l
) ) Determinantal verification
Q |Ency, Enc¢]1, 5, 5]2 +
‘ CLP@ for ZK

Lipksapk} = {[ct];:3r, x Ency (x;7) = [ct]y A Det(C(x,¢)) = 0}



CLP® > Groth-Sahai
[CH20,CLPO21,GKP22,LP23]

* Language defined in G, only

G, complexity = % G, complexity

ElGamal can always be used
e Simple design and automatic optimization
e Shorter, uniformly random crs

But ...

* Less standard, new (falsifiable) assumptions



Q
sound Accumulators Ay, az,
/
. ab/@/‘/ SOUOQ'
S={aq, .., ay,} /2/(
¢ Zs = commit(S, apk)
crs = Zs, apk
Alice (crs, x) Bob (crs)
A ) &

Memb.verify(x, ¢, Zs, apk) = 1 ) Y CcS
Non.Memb.verify(x, ¢, Zs,apk) =1 o) x ¢ S
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[ - ];-sound GS friendly accumulator

* Add a a GS proof of a “knowledge equation”
Source of inefficiency
+1 equation, +1 committed variable

[ - ];-sound determinantal accumulator

* Almost for free (not affect proof size).
Big efficiency gain
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Conclusion

* We define the notion of determinatal primitives
(friendly with CLP@ NIZK framework)

* We propose a new determinantal accumulator

* We propose a set (non-)membership NIZK in
the standard model, with efficiency comparable
with corresponding NIZK in the ROM

* We give more evidence that the CLP@
framework is a valid route to improve over GS
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