Set (Non-)Membership NIZKs
from Determinantal
Accumulators

Helger Lipmaa,
Roberto Parisella,
Simula UiB, Norway

A privacy problem

S =1{1,3,4,7,9,13,19,21} Public set

Alice: the prover Bob: the verifier

4 Does Alice have a number

) in S?

~N
&~

7 €S (secret)
Only if Alice’s

Secret number number is in S

Alice (Enc; (7, rand)) Bob (Enc)

& 2\
(& ~4 \
/\«x’i\‘l)
\",\ : 2L\

P : ’ \\

i
e

Accept or reject

DES
¢ R S P B HeraRe

S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}

Security
Alice

Honest 7

7€S8)

i
&~
-

7E.S

« Completeness: honest prover always convinces the verifier.

S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}

Security

Malicious fij
10¢S

100¢'S
- « Completeness: honest prover always convinces the verifier.

* Soundness: malicious prover cannot convince the verifier.

S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}

Security

Alice
Honest %)
g Malicious
7€S 'y
Q Knows only that
b XES
A

« Completeness: honest prover always convinces the verifier.
* Soundness: malicious prover cannot convince the verifier.
« Zero-knowledge: the verifier learns nothing about the witness

S =1{1,3,4,7,9,13,19,21} L ={x=Enc(7,rand):w = 7,rand}

Set Memlkenstbe shi NI1ZK

Trusted third party Non-Interactive
Crs
Alice (crs, Enc; (x, rand)) x &S Bob (crs, Enc)
\t/

| T A=
-~y
Q <’ i

&

Completeness, Soundness, Zero-knowledge

Succinctness (constant proof size and verifier complexity)

Set (non)-Membership NIZK
/Vof
f Vo G %n,
!

A

Alice (crs, Enc; (x, rand) Bob (crs, Enc
(45)xESor X &S)

N : :.
“

Completeness, Soundness, Zero-knowledge

Succinctness (constant proof size and verifier complexity)

Set Membership NIZK With Signatures

e crs explicitly depends on the set S.

* It seems to disallow Non-membership

Accumulators Non ZK Set (Non-)Membership

S = {al, e am}

¢ Zs = commit(S, apk)
crs = Zs, apk
Alice (crs, x) Bob (crs)
i X, ¢ ey,

Memb.verify(x, ¢, Zs, apk) = 1) Y CcS
Non.Memb.verify(x, ¢, Zs,apk) =1 o) x ¢ S

10

Set Membership NIZK With Accumulators

S = {al, e am}
¢ Zs = commit(S, apk)
crs = apk
+ NIZK system crs
Alice (crs, Enc; (x, rand)) Bob (crs, Enc)
‘:“[77:, EnCd) ’

Prove that

I\/Iemb.verify(Enc, Ency, Zs, apk) =1
Non.l\/lemb.verify(Enc, Encg, ¢, Zs, apk) =1

11

* crs depends only from |S]|.

* It allows Non-membership proof

12

Falsifiable Set-membership (without ROM)

Constructions

Primitives

Signature or
accumulators

Communication
and
computational
complexity

Assumptions

Cryptographic groups

* Bracket notation for additive groups
G =(9)=1[1],
[x] € G: [x] = x[1] (= x g9),

« Hardness assumptions

1. x « |x] is hard (discrete logarithm assumption)
2. |xy] « (Ix], [y]) is hard (CDH assumption)

Bilinear Pairing Groups
« Three additive groups cryptographic groups

(png'g21gTJ[] []2:)

p is the order of each group
1 x|y - [yl =[x ylr
2. |x]{ e [x], is hard (type lll pairings: no efficient
isomorphism between groups)

Groth-Sahai

Set Membership NIZKs

Underlying primitive + GS crs

Ccrs

ver(crs,x,m) = 0
Primitive PPE verification

+
Groth-Sahai for ZK

16

Pairing-based Set-membership (without ROM)
Constructions AN11 DGP+19

Primitives AN accumulator BB signatures
Groth-Sahai Groth-Sahai

Signature or
accumulators

Communication
and
computational
complexity

Assumptions

A matrix C is a a QDR (Quasi-
Determinantal Representation) of a
polynomial F it

1. Affine map: each entry of C is an affine

0
function "%ff@”/b,b
- - N
2. F -rank: Det(C (x)) = F(x) S@’?f&;”fe/
/O/)

3. First column dependence
* Lokcr = {[ct],: 31, %, Ency,(%;7r) = [ct]; A det(C (%)) = 0}

ElGamal (linear homomorphic)

i [CLPO21] NIZK

Prover ([e],, [ct],, T, X) ¥ Verifier (lels, [ct]y)

Compute y

ct,| < Enc,,(y) .
| y]l P [cty]l, [5,2]2 Accept if

7l 11+ [C@) - [4] =1

Check encrypted version

Compute [5, 2]2

First column dependence

.) messssss) Soundness
yin[]y, ein[];

19

CLPO Set Membership NIZKs

Determinantal accumulator key(apk) + [e],
o> ; e
711 - [112 + [(C (x,)]s - [5]2 = 0l
)) Determinantal verification
Q |Ency, Enc¢]1, 5, 5]2 +
‘ CLP@ for ZK

Lipksapk} = {[ct];:3r, x Ency (x;7) = [ct]y A Det(C(x,¢)) = 0}

CLP® > Groth-Sahai
[CH20,CLPO21,GKP22,LP23]

* Language defined in G, only

G, complexity = % G, complexity

ElGamal can always be used
e Simple design and automatic optimization
e Shorter, uniformly random crs

But ...

* Less standard, new (falsifiable) assumptions

Q
sound Accumulators Ay, az,
/
. ab/@/‘/ SOUOQ'
S={aq, .., ay,} /2/(
¢ Zs = commit(S, apk)
crs = Zs, apk
Alice (crs, x) Bob (crs)
A) &

Memb.verify(x, ¢, Zs, apk) = 1) Y CcS
Non.Memb.verify(x, ¢, Zs,apk) =1 o) x ¢ S

22

[-];-sound GS friendly accumulator

* Add a a GS proof of a “knowledge equation”
Source of inefficiency
+1 equation, +1 committed variable

[-];-sound determinantal accumulator

* Almost for free (not affect proof size).
Big efficiency gain

23

Conclusion

* We define the notion of determinatal primitives
(friendly with CLP@ NIZK framework)

* We propose a new determinantal accumulator

* We propose a set (non-)membership NIZK in
the standard model, with efficiency comparable
with corresponding NIZK in the ROM

* We give more evidence that the CLP@
framework is a valid route to improve over GS

Thanks for your attention

Check the full version
On eprint
Questions?

Bibliography:
[CH20]: Shorter Non-Interactive Zero-Knowledge Arguments and ZAPs for Algebraic Languages
[CLPO21]: Efficient NIZKs for Algebraic Sets

[GKP22]: NIWI and New Notions of Extraction for Algebraic Languages
[LP22]: full version of this paper (eprint)

