
A Tale of VOLEs, Zero-
Knowledge Proofs and
Post-Quantum Signatures
Peter Scholl
LatinCrypt 2023

Standardization of Post-Quantum Signatures

2023: new algorithms submitted to diversify candidates

Peter Scholl 2

Dilithium Falcon SPHINCS+

Structured lattices
Fast
0.7 kB

Hash-based
Slow signing
8-17 kB

Structured lattices
Fast
2.4 kB

SPHINCS+

FAEST

AES/hash-based
Fast-ish
5-7 kB

Security:
Speed:
Size:

FAEST: Design and Inspiration

Peter Scholl 3

Secure 2-Party
ComputationVOLE-based ZKMPC-in-the-

head signatures

Picnic

BBQ

Banquet

Mac’n’Cheese QuickSilver

Line-Point ZK SoftSpokenOT

Overview of today

Peter Scholl 4

Vector oblivious linear evaluation (VOLE)

FAEST

Zero-knowledge proofs VOLE-in-the-head

Based on

Peter Scholl 5

Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head
with Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß,
Emmanuela Orsini, Lawrence Roy
CRYPTO 2023 (ePrint 2023/996)

FAEST Digital Signature Scheme
+ Christian Majenz, Shibam Mukherjee, Sebastian Ramacher, Christian Rechberger
Submission to NIST PQC Standardization process
https://faest.info

https://faest.info/

Zero-knowledge proofs

• A proof where the verifier learns nothing
• Except the truth of the statement

Peter Scholl 6

I know the
solution!

Prover Verifier

I believe you

Proof should be correct, sound and zero-knowledge

Zero-knowledge proofs

• A proof where the verifier learns nothing
• Except the truth of the statement: 𝐶 𝑤 = 0
• 𝐶 ∶ 𝔽! → 𝔽 (arithmetic circuit)

Peter Scholl 7

I know 𝒘!

Prover Verifier

I believe you

Proof should be correct, sound and zero-knowledge

Families of ZK Proofs

8

Proof size

Prover runtime

Groth16

STARKs

Ligero

MPC-in-the-head

VOLE-ZK
Succinct

Linear

Size: < 1 field elem. per mult.
designated verifier

Families of ZK Proofs

9

Proof size

Prover runtime

Groth16

STARKs

Ligero

MPC-in-the-head

VOLE-in-the-head
Succinct

Linear

Size: 1 − 10 field elem. per mult.
publicly verifiable

Vector Oblivious Linear Evaluation

Peter Scholl 10

𝑞⃗ = 𝑤Δ + 𝑣⃗
𝑣⃗ , 𝑤 ∈ 𝔽!

Δ

Δ

Δ ∈ 𝔽VOLE

Today: 𝑣⃗ always uniform
Variant: random VOLE where 𝑤 also uniform

What is VOLE good for?

Fundamental building block in many cryptographic protocols:

• General-purpose secure computation

• Oblivious transfer
• Implied by variant of VOLE

• Private set intersection
• Contact discovery; online advertising

Peter Scholl 11

OT

Linearly homomorphic commitments from
VOLE
To commit to 𝑤 :
• Alice inputs (𝑤, 𝑣⃗) to VOLE, for random 𝑣⃗

To open 𝑤:
• Alice sends (𝑤, 𝑣), Bob checks if 𝑞 = 𝑤Δ + 𝑣
• Hiding: since 𝑣 is random
• Binding: opening to 𝑤! ≠ 𝑤 requires guessing Δ, prob.
1/|𝔽|

Commitments are linearly homomorphic

Peter Scholl 12

𝑝(𝑥) = 𝑤𝑥 + 𝑣

Δ

𝑞
𝑝′(𝑥)

[BMRS 21, WYKW 21]

VOLE-ZK: Zero Knowledge
Proofs with VOLE

Peter Scholl 13

Proving circuits with linear commitments

• Commit to extended witness 𝑤
• inputs, + output wire of every mult.

• Evaluate linear gates
• Using linear homomorphism

• Prove correctness of multiplications

Peter Scholl 14

[Cramer-Damgård 97]

x0

Goal: prove knowledge of 𝑥 such that 𝐶 𝑥 = 𝑧

Checking multiplication gates

• Multiply two lines ⇒ quadratic
polynomial 𝑝!" 𝑥 = 𝑝! 𝑥 𝑝"(𝑥)

= 𝑎𝑏𝑥# +⋯
• Compute:

• 𝑝"# 𝑥 − 𝑥𝑝$ 𝑥 = 𝑎𝑏 − 𝑐 𝑥% + 𝑑𝑥 + 𝑒
= 𝑑𝑥 + 𝑒

• Send (𝑑, 𝑒) to Bob
• Masked with random VOLE
• Bob checks 𝑑Δ + 𝑒 = 𝑞"# − Δ𝑞$

Peter Scholl 15

×

𝑝"(𝑥)

Δ

𝑞"

𝑞#

𝑎

𝑏

𝑐

𝑞"# = 𝑝"#(Δ)

𝑝#(𝑥)

𝑝"#(𝑥)

[DIO 21, YSWW 21]

ZK proof from VOLE: Initial Protocol

Peter Scholl 16

(𝑑- , 𝑒-) for 𝑖-th mult. gate

Soundness error:
• 2/|𝔽|

𝑞⃗ = 𝑤Δ + 𝑣⃗𝑣⃗ , 𝑤 ∈ 𝔽!
Δ

VOLE

Cost for 𝑚 multiplications:
• VOLE + 2𝑚 field elements

[DIO 21]

Optimization: batching multiplications

Peter Scholl 17

(𝑑- , 𝑒-) for 𝑖-th mult. gate

Soundness error:
• 2/ 𝔽 + 𝑚/|𝔽|

𝑞⃗ = 𝑤Δ + 𝑣⃗𝑣⃗ , 𝑤 ∈ 𝔽!
Δ

VOLE

Cost for 𝑚 multiplications:
• Length-𝑚 VOLE

∑- 𝑑-𝑟-, ∑- 𝑒-𝑟-
𝑟 ← 𝔽

[YSWW 21]

Improvements/extensions

• Circuits over 𝔽.: [YSWW 21]
• Let 𝑤 ∈ 𝔽$, but use subfield VOLE 𝑞 = 𝑤Δ + 𝑣 in 𝔽$!

• Higher-degree checks: [YSWW 21]
• Keep adding/multiplying VOLE commitments
• Commit to every 𝑘-th mult. gate ⇒ poly degree up to 2%

• Mixed Boolean/arithmetic circuits [BBMRS 21, YYXKW 21]
• VOLE in 𝔽$ and 𝔽&, prove consistency

Peter Scholl 18

Building VOLE

• Linearly homomorphic encryption
ØFairly slow
Ø𝑂(𝑚) communication

• Pseudorandom correlation generators (“Silent” VOLE)
• Learning parity with noise
• Random, length-𝑚 VOLE: 𝑂(log𝑚) communication (+𝑚 field elem. for chosen 𝑤)

• With oblivious transfer (“SoftSpokenVOLE”)
• Mainly symmetric primitives, fast
• 𝑂(log𝑚) communication in small fields

Peter Scholl 19

Building VOLE in 𝔽! with oblivious transfer (OT)
(SoftSpokenOT [Roy 22])

Peter Scholl 20

𝑤&

𝑤'

⋮
𝑤(for 𝑖 ≠ Δ

Δ ← 𝔽!all-but-one
OT

Convert to VOLE

𝑣⃗, 𝑤 𝑞⃗ = 𝑤Δ + 𝑣⃗ ∈ 𝔽'

Convert to VOLE

Conversion to VOLE
Key observation: (𝑛 − 1)-out-of-𝑛 secret sharing ⇒ VOLE in 𝔽/
[Roy 22]

Peter Scholl 21

𝑤&

𝑤'

⋮

𝑤 = 𝑤& +⋯+𝑤'
𝑣 = −1 ⋅ 𝑤& −⋯− 𝑛 ⋅ 𝑤' (in 𝔽!)

Δ ∈ 𝔽!

𝑞 =F
()&

'

𝑤(⋅ (Δ − 𝑖)

= 𝑤Δ + 𝑣

𝑤(for 𝑖 ≠ Δ

Conversion to VOLE
Key observation: (𝑛 − 1)-out-of-𝑛 secret sharing ⇒ VOLE in 𝔽/
[Roy 22]

Peter Scholl 22

𝑤&

𝑤'

⋮

𝑤 = 𝑤& +⋯+𝑤'
𝑣⃗ = −1 ⋅ 𝑤& −⋯− 𝑛 ⋅ 𝑤' (in 𝔽!")

Δ ∈ 𝔽!

𝑞⃗ =F
()&

'

𝑤(⋅ (Δ − 𝑖)

= 𝑤Δ + 𝑣⃗

𝑤(for 𝑖 ≠ Δ

= 𝑃𝑅𝐺(𝑠&)

= 𝑃𝑅𝐺(𝑠&)

VOLE-in-the-head: from designated verifier
to publicly verifiable ZK

Peter Scholl 23

Public-Receiver VOLE (aka VOLE-in-the-head)

Peter Scholl 24

𝑞⃗ = 𝑤Δ + 𝑣⃗

𝑣⃗ , 𝑤

ΔVOLE
Δ

“commit”

“open”

How to do VOLE-in-the-head? Just commit!

Peter Scholl 25

All-but-one
vector commitment

Commit to 𝑛 random strings

Open 𝑛 − 1

Convert to VOLE

Challenge Δ

𝑤, 𝑣⃗ 𝑞⃗ = 𝑤Δ + 𝑣⃗

Convert to VOLE

[BBdGKORS 23]

VOLE-in-the-head: Summary

• If 𝑤 is random, can succinctly commit to arbitrarily long VOLE
• With PRG/hash

• Communication cost:
• 𝑂(log 𝑛) with PRG tree optimization

• For non-random 𝑤:
• Send extra 𝑤 field elements

Peter Scholl 26

ZK from VOLE-in-the-head: putting things together

Peter Scholl 27

VOLE: “commit” to extended witness

Δ ← 𝔽!
“open” VOLE

Soundness error:
• 3/|𝔽| (small fields)
• Improve via parallel repetition

𝑑, 𝑒
𝑟 ← 𝔽!

Communication cost:
• 𝔽%: ≈10 bits per AND
• 𝐹*: 1-2 field elements per mult

The Curse of Parallel Repetitions with >3
Rounds
• Problem: Fiat-Shamir can worsen security for >3-round protocols

ØAdversary can attack each round independently

• Solution: more rounds!
ØConsistency check: prove same witness is committed in small-field VOLEs
ØAllows to combine multiplication checks into one check

Peter Scholl 28

Final Protocol: Overview

Peter Scholl 29

VOLE: “commit” to extended witness

Δ
“open” VOLE

𝑐ℎ&
mult check

𝑐ℎ%
consistency check

Peter Scholl 30

PQ Signatures From
VOLE-in-the-Head

FAEST: high-level overview

• Public key: AES encryption of known message under secret key

• Signature on 𝑚:
• Zero-knowledge proof that key is valid
• Using VOLE-in-the-head

Peter Scholl 31

AES: a ZK-friendly block cipher?

ShiftRows, MixColumns, AddRoundKey:

• All linear over 𝔽$

S-Box:

• Inversion in 𝔽$"
• Prove in ZK as 1 multiplication check

Peter Scholl 32

FAEST: example performance

• Signature sizes:
• Smaller than SPHINCS+ and most code-based candidates
• Faster signing, slower verification

• Possible variants:
• Fixed-key AES (Even-Mansour): 10% smaller
• MQ instead of AES: size ≈ 3 kB

Peter Scholl 33

Sign/Verify Size

FAEST-128s ≈ 8ms 5 006 B

FAEST-128f ≈ 1ms 6 336 B

FAEST-256s ≈ 27ms 22 100 B

FAEST-256f ≈ 3ms 28 400 B

Conclusion
VOLE-in-the-head ZK proofs:
• Lightweight, fast and powerful
• Proof size:

• ≈ 10 bits or 1 field element per mult.

Application: FAEST PQ signature:
• Conservative security
• Reasonable performance

Resources:
• https://ia.cr/2023/996
• https://faest.info

Peter Scholl 34

Thank you!

https://ia.cr/2023/996
https://faest.info/

