A Tale of VOLEs, Zero-Knowledge Proofs and Post-Quantum Signatures

Peter Scholl

LatinCrypt 2023

Standardization of Post-Quantum Signatures

	Dilithium	FALCON Falcon	SPHINCS + SPHINCS+	FAEST
Security:	Structured lattices	Structured lattices	Hash-based	AES/hash-based
Speed:	Fast	Fast	Slow signing	Fast-ish
Size:	2.4 kB	0.7 kB	8-17 kB	5-7 kB

2023: new algorithms submitted to diversify candidates

NIST

FAEST: Design and Inspiration

Peter Scholl

Based on

Publicly Verifiable Zero-Knowledge and Post-Quantum Signatures From VOLE-in-the-Head with Carsten Baum, Lennart Braun, Cyprien Delpech de Saint Guilhem, Michael Klooß, Emmanuela Orsini, Lawrence Roy CRYPTO 2023 (ePrint 2023/996)

FAEST Digital Signature Scheme

+ Christian Majenz, Shibam Mukherjee, Sebastian Ramacher, Christian Rechberger Submission to NIST PQC Standardization process <u>https://faest.info</u>

Zero-knowledge proofs

- A proof where the verifier learns nothing
 - Except the truth of the statement

Proof should be correct, sound and zero-knowledge

Zero-knowledge proofs

- A proof where the verifier learns nothing
 - Except the truth of the statement: C(w) = 0
 - $C: \mathbb{F}^n \to \mathbb{F}$ (arithmetic circuit)

Proof should be correct, sound and zero-knowledge

Families of ZK Proofs Linear MPC-in-the-head VOLE-ZK Proof size Succinct Ligero Size: < 1 field elem. per mult. STARKs designated verifier Groth16 Prover runtime

Families of ZK Proofs Linear MPC-in-the-head VOLE-in-the-head Proof size Succinct Ligero Size: 1 - 10 field elem. per mult. STARKs publicly verifiable Groth16 Prover runtime

Vector Oblivious Linear Evaluation

Peter Scholl

What is VOLE good for?

Fundamental building block in many cryptographic protocols:

Peter Scholl

- General-purpose secure computation
- Oblivious transfer
 - Implied by variant of VOLE
- Private set intersection
 - Contact discovery; online advertising

11

 \bigcap

Linearly homomorphic commitments from VOLE

To commit to \vec{w} :

• Alice inputs (\vec{w}, \vec{v}) to VOLE, for random \vec{v}

To open *w*:

- Alice sends (w, v), Bob checks if $q = w\Delta + v$
- Hiding: since v is random
- Binding: opening to w' ≠ w requires guessing Δ, prob.
 1/|F|

Commitments are linearly homomorphic

12

VOLE-ZK: Zero Knowledge Proofs with VOLE

Proving circuits with linear commitments

Goal: prove knowledge of x such that C(x) = z

- Commit to extended witness \vec{w}
 - inputs, + output wire of every mult.
- Evaluate linear gates
 - Using linear homomorphism

• Prove correctness of multiplications

• Bob checks $d\Delta + e = q_{ab} - \Delta q_c$

a

ZK proof from VOLE: Initial Protocol [DIO 21]

 (d_i, e_i) for *i*-th mult. gate

Soundness error:

• 2/|F|

Cost for *m* multiplications:

• VOLE + 2*m* field elements

Optimization: batching multiplications

Soundness error:

• $2/|\mathbb{F}| + m/|\mathbb{F}|$

Cost for *m* multiplications:

• Length-*m* VOLE

Improvements/extensions

- Circuits over \mathbb{F}_2 : [YSWW 21]
 - Let $w \in \mathbb{F}_2$, but use subfield VOLE $q = w\Delta + v$ in \mathbb{F}_{2^k}
- Higher-degree checks: [YSWW 21]
 - Keep adding/multiplying VOLE commitments
 - Commit to every k-th mult. gate \Rightarrow poly degree up to 2^k
- Mixed Boolean/arithmetic circuits [BBMRS 21, YYXKW 21]
 - VOLE in \mathbb{F}_2 and \mathbb{F}_p , prove consistency

Building VOLE

- Linearly homomorphic encryption
 ➢ Fairly slow
 ➢ O(m) communication
- Pseudorandom correlation generators ("Silent" VOLE)
 - Learning parity with noise
 - Random, length-*m* VOLE: $O(\log m)$ communication (+*m* field elem. for chosen \vec{w})
- With oblivious transfer ("SoftSpokenVOLE")
 - Mainly symmetric primitives, fast
 - $O(\log m)$ communication in small fields

Building VOLE in \mathbb{F}_n with oblivious transfer (OT)

(SoftSpokenOT [Roy 22])

Conversion to VOLE 🏸

Key observation: (n - 1)-out-of-n secret sharing \Rightarrow VOLE in \mathbb{F}_n

[Roy 22]

Conversion to VOLE ***

Key observation: (n - 1)-out-of-*n* secret sharing \Rightarrow VOLE in \mathbb{F}_n [Roy 22]

VOLE-in-the-head: from designated verifier to publicly verifiable ZK

Public-Receiver VOLE (aka VOLE-in-the-head)

How to do VOLE-in-the-head? Just commit!

[BBdGKORS 23]

Convert to VOLEConvert to VOLE
$$\vec{w}, \vec{v}$$
 $\vec{q} = \vec{w}\Delta + \vec{v}$

VOLE-in-the-head: Summary

- If \vec{w} is random, can succinctly commit to arbitrarily long VOLE
 - With PRG/hash
- Communication cost:
 - $O(\log n)$ with PRG tree optimization
- For non-random *w*:
 - Send extra |w| field elements

ZK from VOLE-in-the-head: putting things together

- 3/|F| (small fields)
- Improve via parallel repetition

Communication cost:

- \mathbb{F}_2 : ≈ 10 bits per AND
- F_p : 1-2 field elements per mult

The Curse of Parallel Repetitions with >3 Rounds

- Problem: Fiat-Shamir can worsen security for >3-round protocols
 Adversary can attack each round independently
- **Solution**: more rounds!

Consistency check: prove same witness is committed in small-field VOLEs
 Allows to combine multiplication checks into one check

Final Protocol: Overview

PQ Signatures From VOLE-in-the-Head

FAEST: high-level overview

• Public key: AES encryption of known message under secret key

• Signature on *m*:

- Zero-knowledge proof that key is valid
- Using VOLE-in-the-head

AES: a ZK-friendly block cipher?

ShiftRows, MixColumns, AddRoundKey:

• All linear over \mathbb{F}_2

S-Box:

- Inversion in \mathbb{F}_{2^8}
- Prove in ZK as 1 multiplication check

FAEST: example performance

	Sign/Verify	Size
FAEST-128s	≈ 8ms	5 006 B
FAEST-128f	$\approx 1 \text{ms}$	6 336 B
FAEST-256s	≈ 27ms	22 100 B
FAEST-256f	≈ 3ms	28 400 B

- Signature sizes:
 - Smaller than SPHINCS+ and most code-based candidates
 - Faster signing, slower verification
- Possible variants:
 - Fixed-key AES (Even-Mansour): 10% smaller
 - MQ instead of AES: size $\approx 3 \text{ kB}$

Conclusion

VOLE-in-the-head ZK proofs:

- Lightweight, fast and powerful
- Proof size:
 - ≈ 10 bits or 1 field element per mult.

Application: FAEST PQ signature:

- Conservative security
- Reasonable performance

Resources:

- <u>https://ia.cr/2023/996</u>
- https://faest.info

