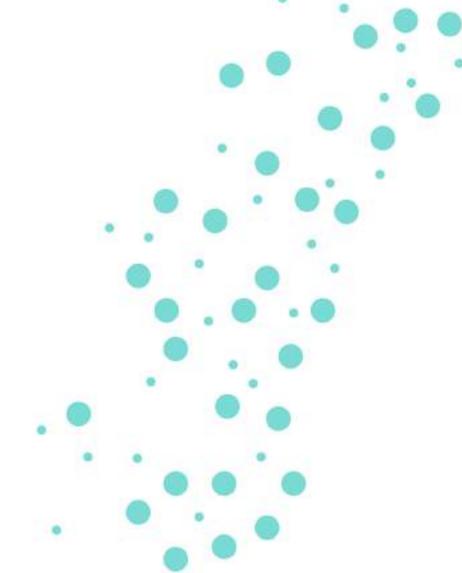


Multi-GPU Acceleration of High-order Avalanche Tests for Symmetric Ciphers

Emanuelle Bellini¹, Juan Grados¹, Mohamed Rachidi¹, Nitin Satpute¹, Joan Daemen¹, Solane El Hirch²

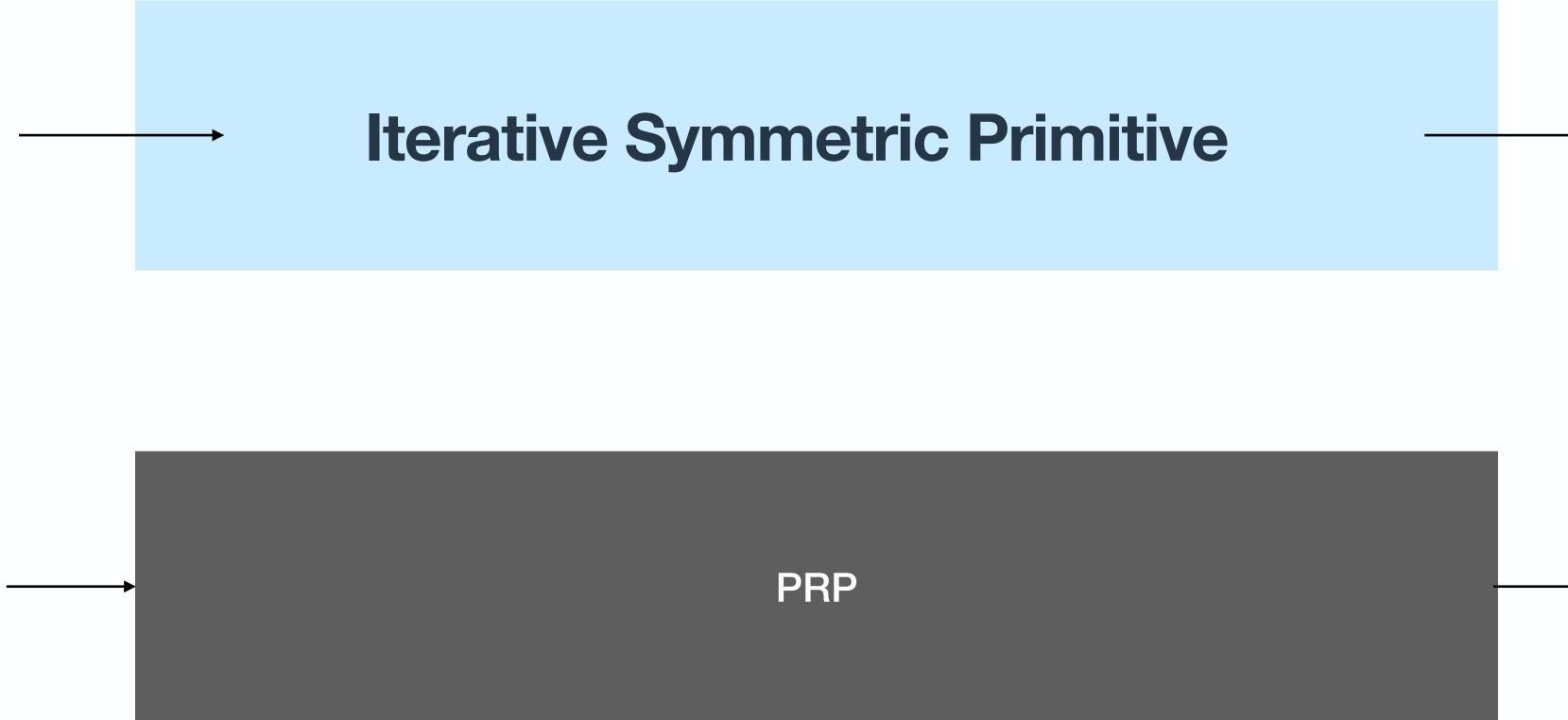
1 Technology Innovation Institute, Abu Dhabi, UAE 2 Radboud University, Radboud, Netherlands

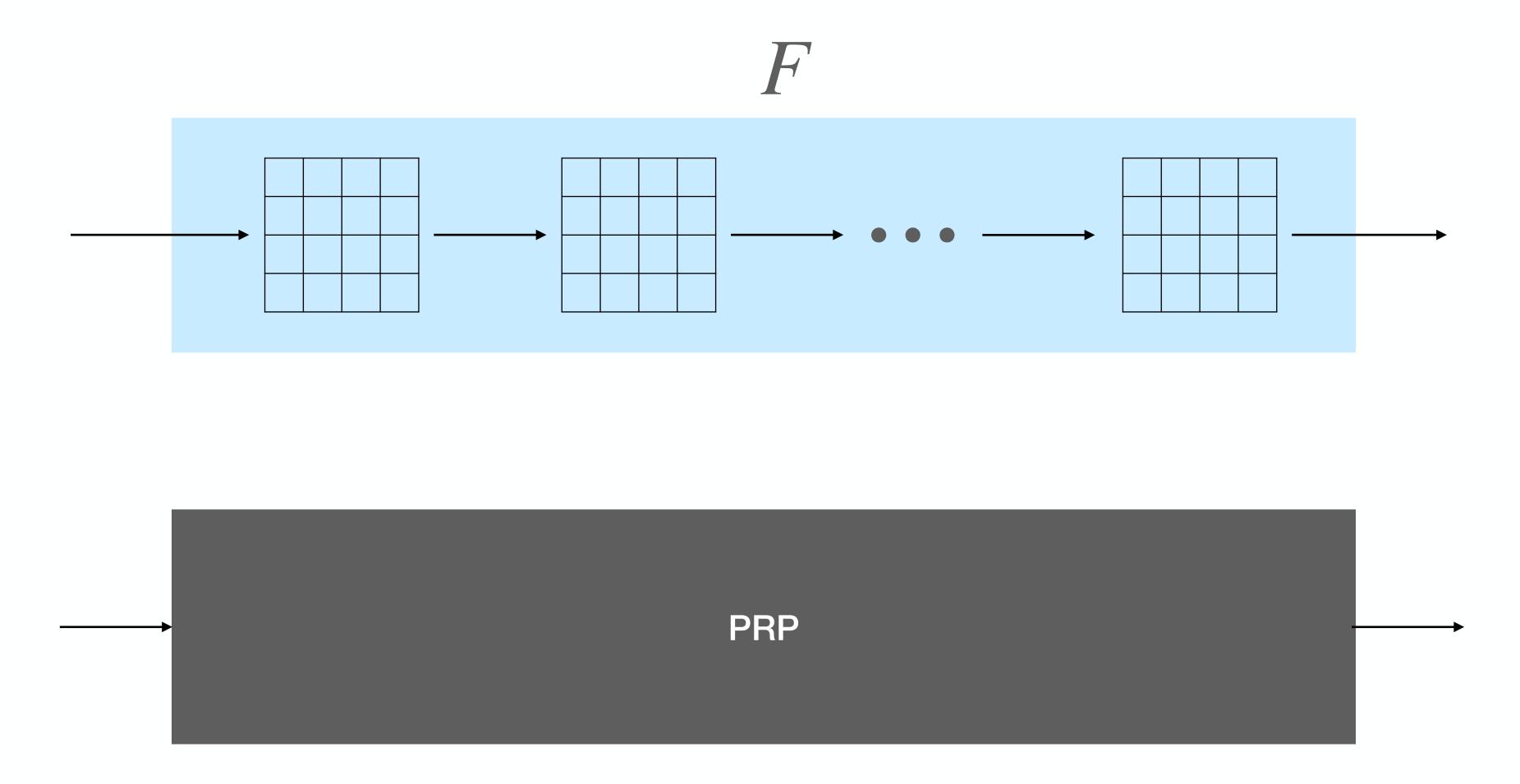
Cryptography **Research Center**



Outline

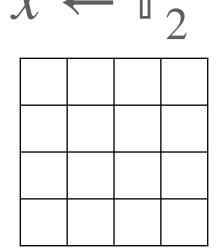
- First-Order avalanche tests
- High-Order avalanche tests
- GPU-implementation
- Results on ASCON
- Conclusion



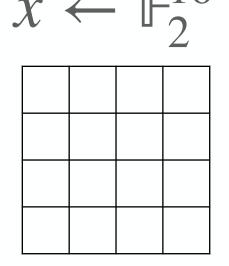


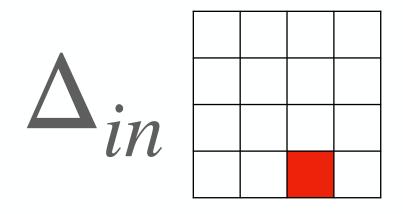
Truncated Differential Distinguisher of a 3-round Iterative symmetric cipher

Truncated Differential Distinguisher of a 3-round Iterative symmetric cipher $x \leftarrow \mathbb{F}_2^{16}$

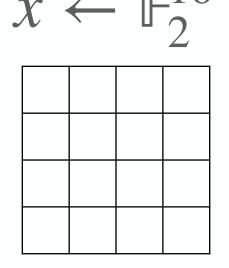


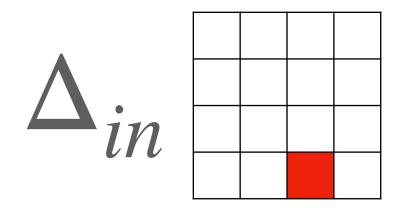
Truncated Differential Distinguisher of a 3-round Iterative symmetric cipher $x \leftarrow \mathbb{F}_2^{16}$

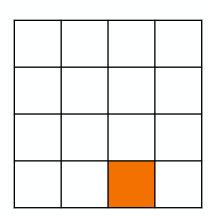


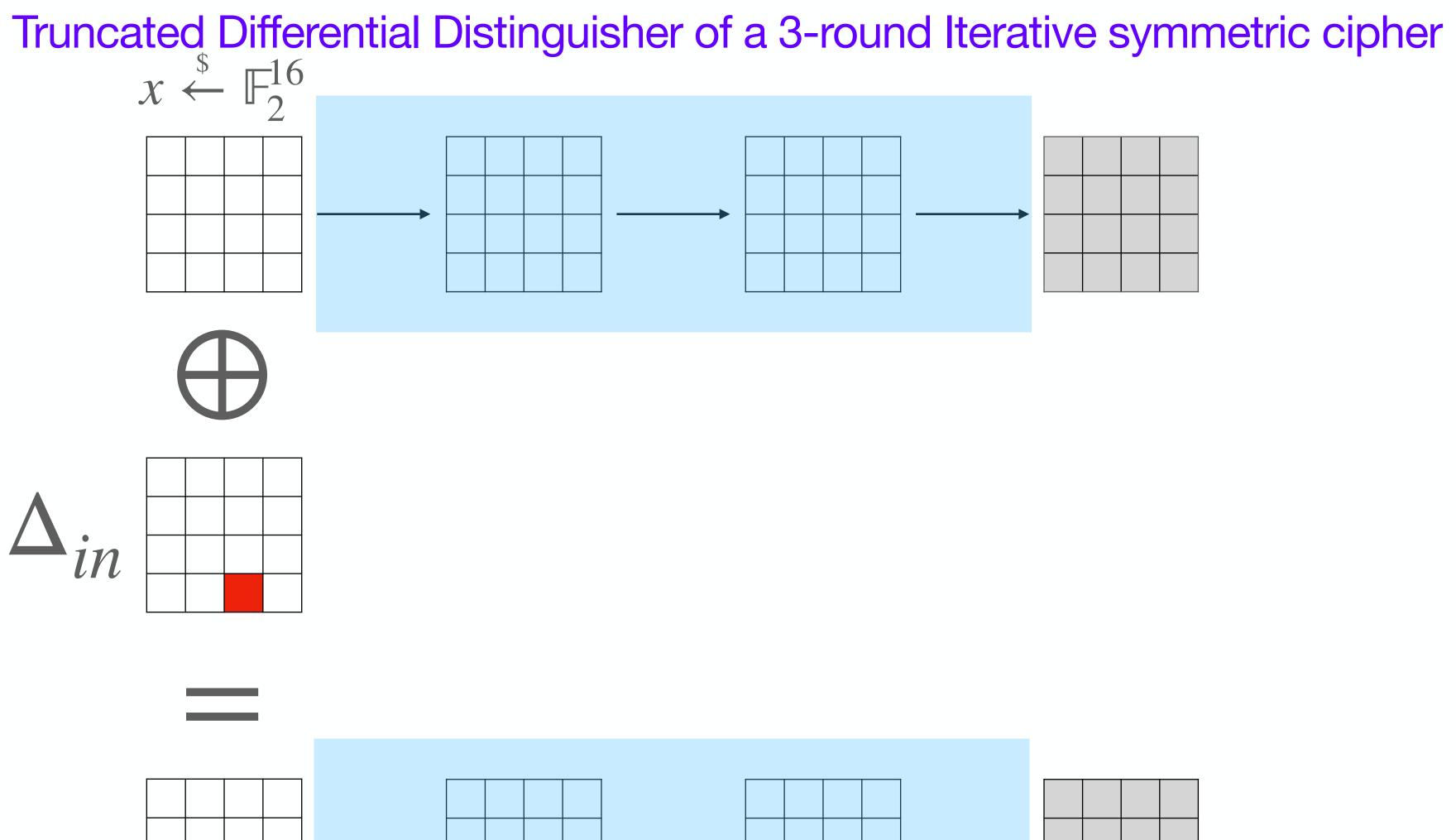


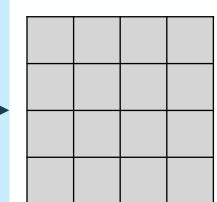
Truncated Differential Distinguisher of a 3-round Iterative symmetric cipher $x \leftarrow \mathbb{F}_2^{16}$

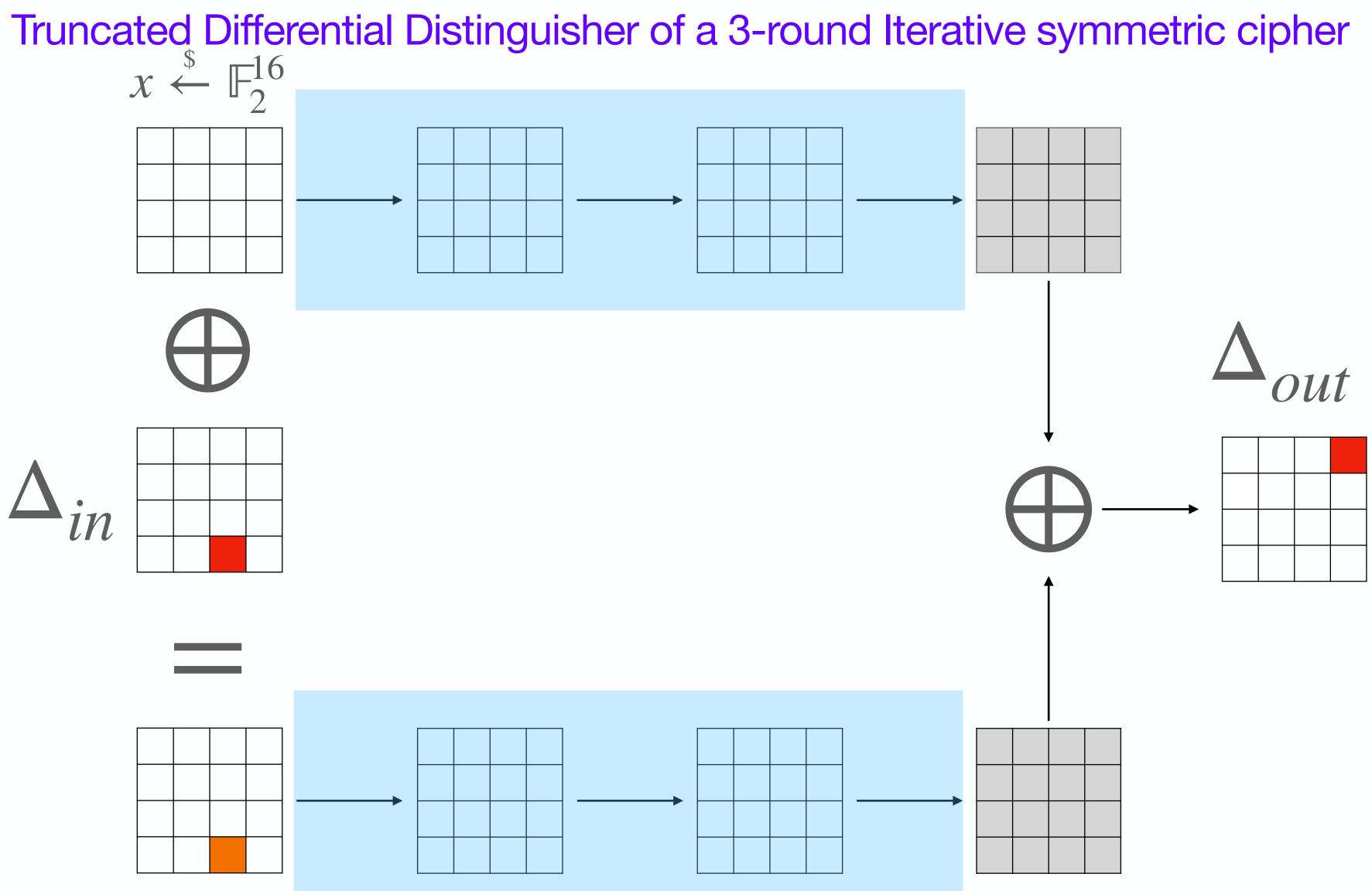


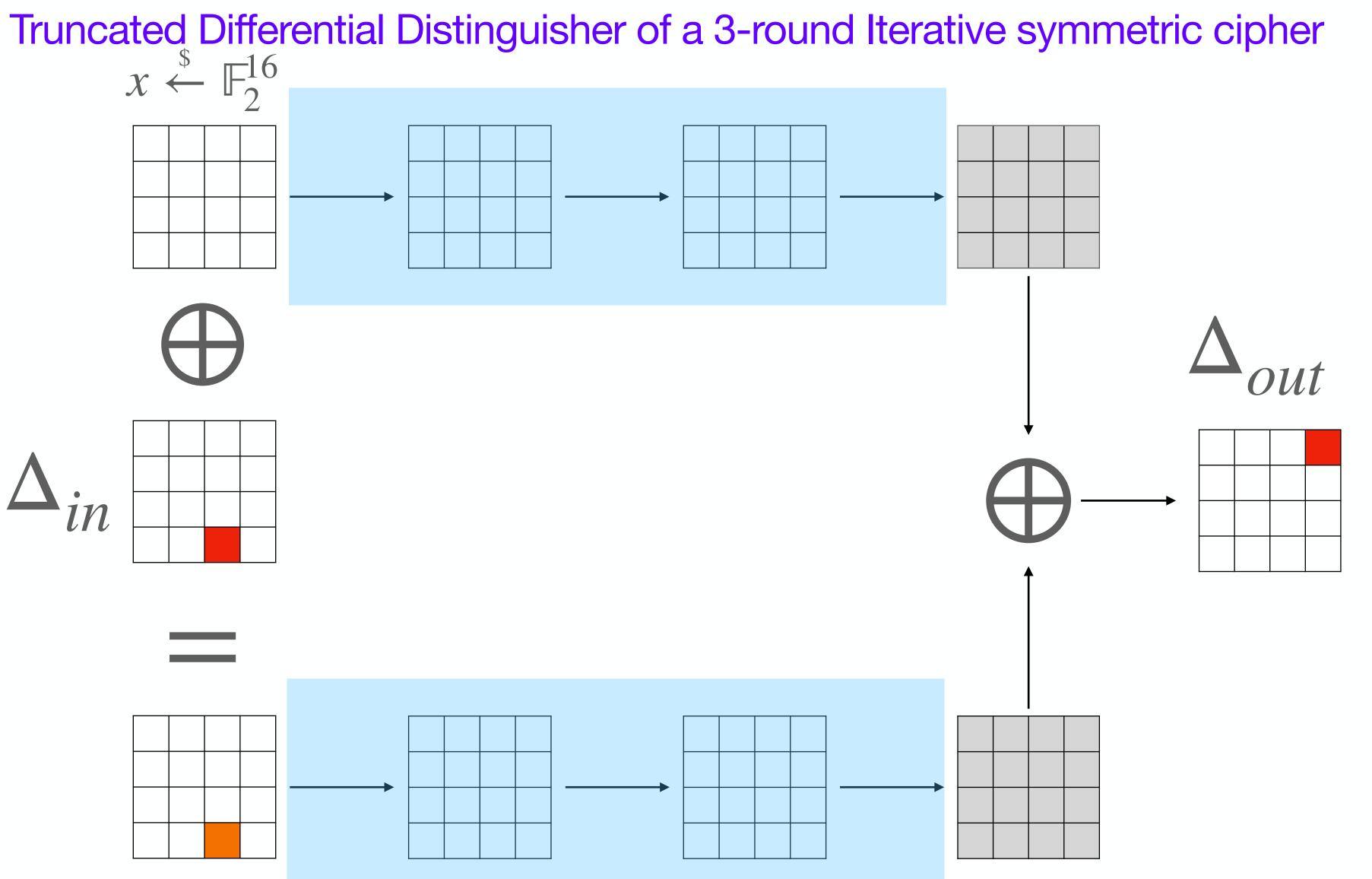


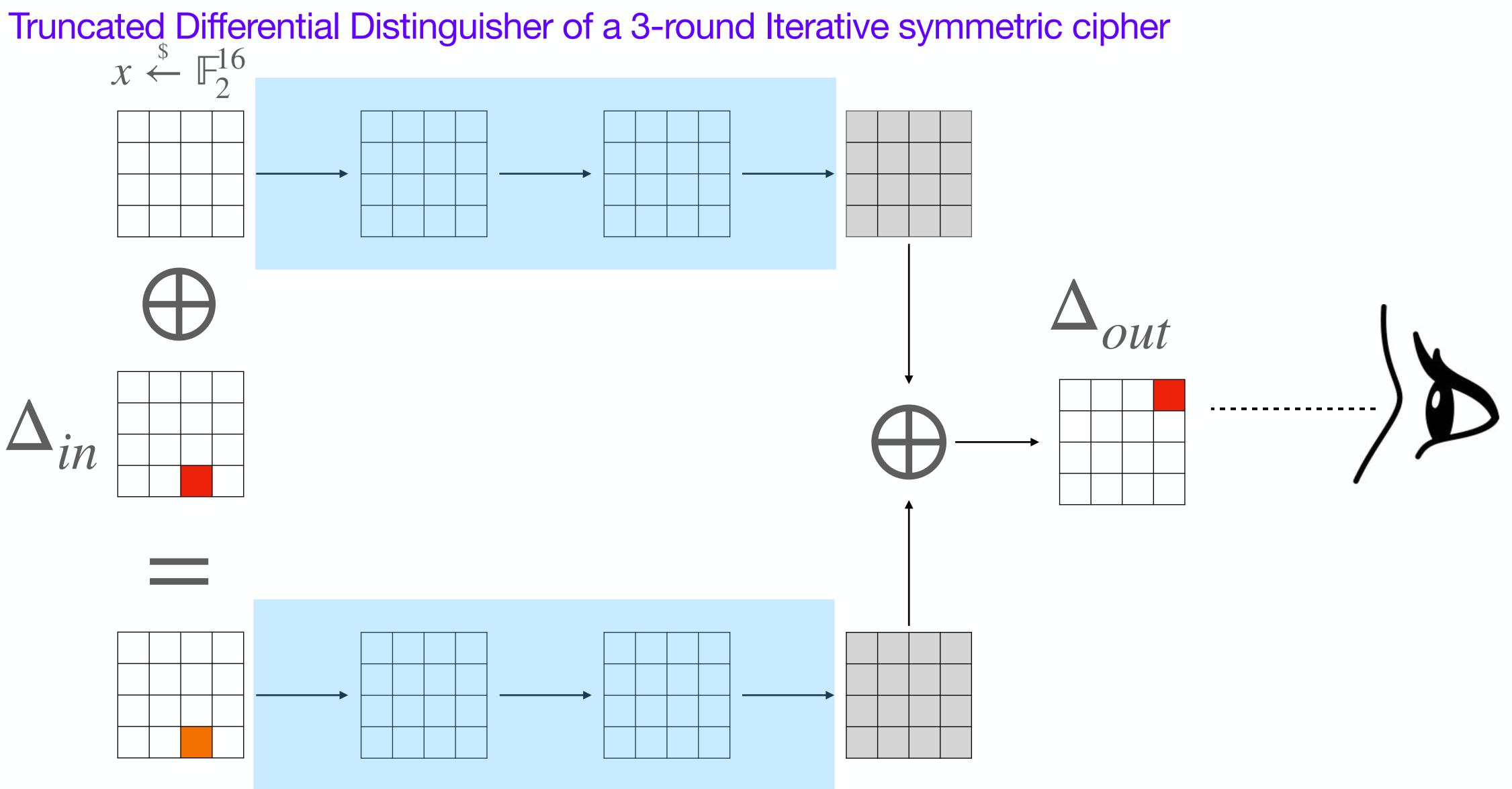


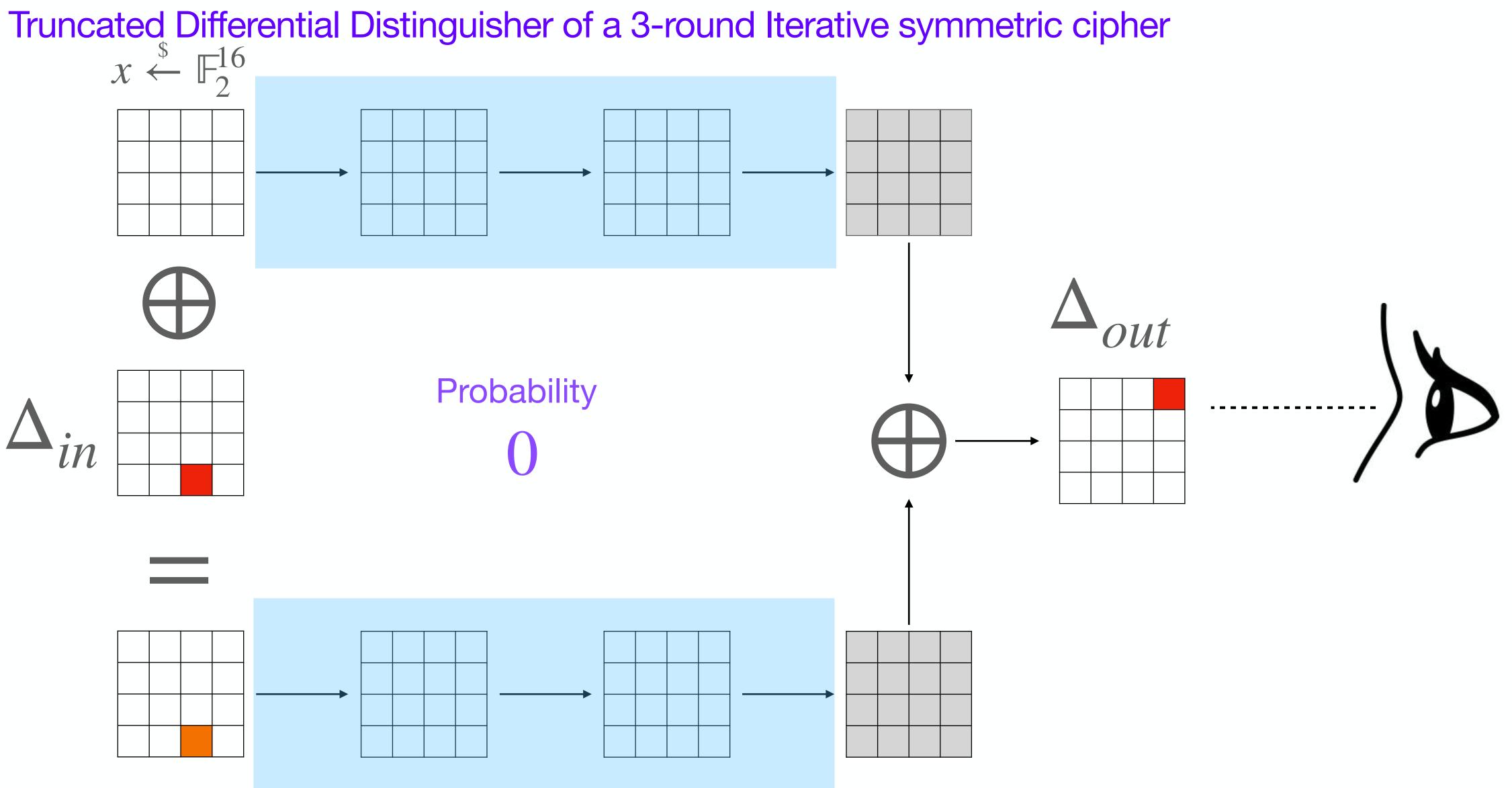












Avalanche Dependence [Webster85] Metric

$D_{av}(F, \Delta)$

with $\delta(x)$ equal to

Number of output bits that may flip, defined as

(A) =
$$b - \sum_{i} \delta(p_i)$$

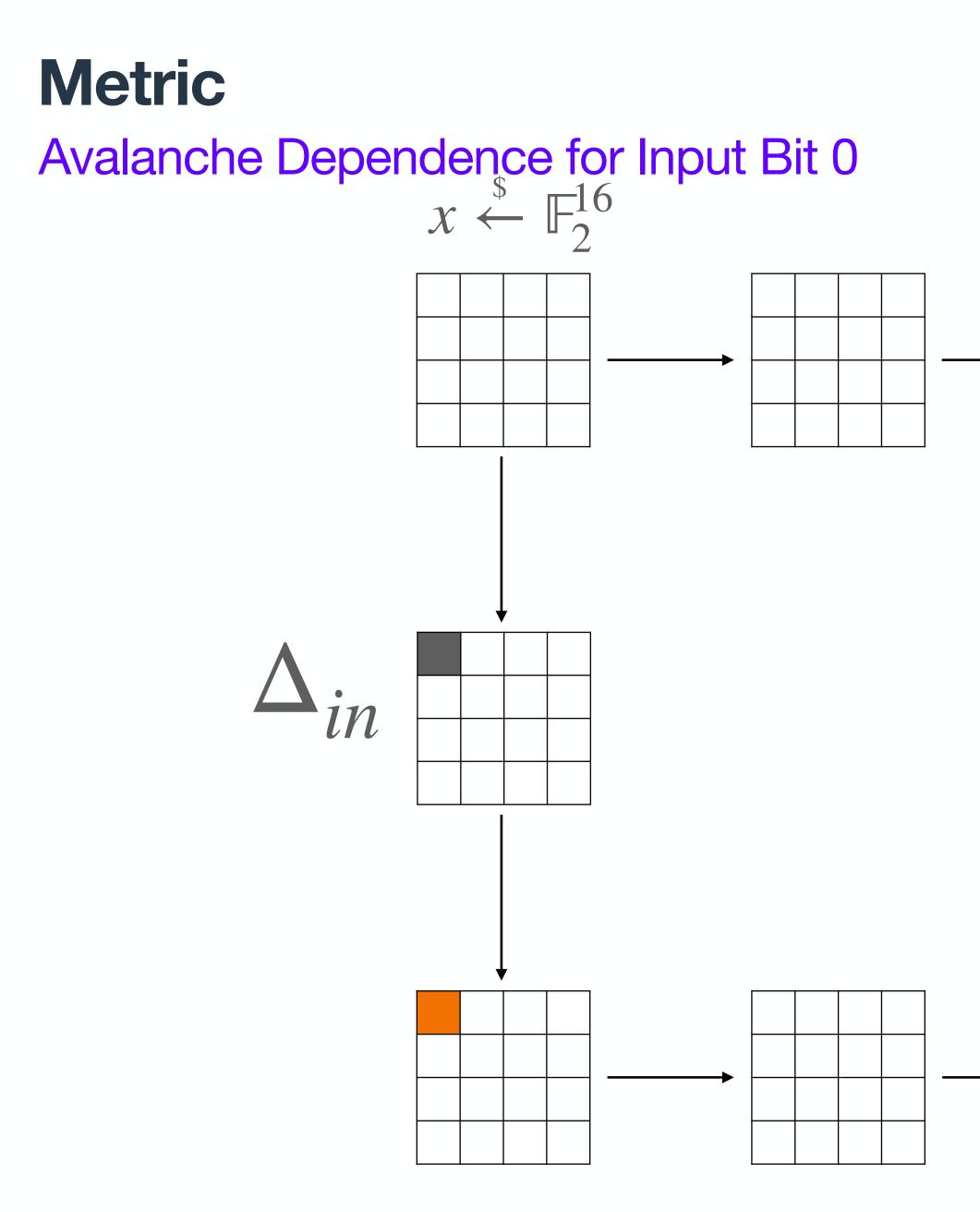
1 if $x = 0$ and 0 otherwise.

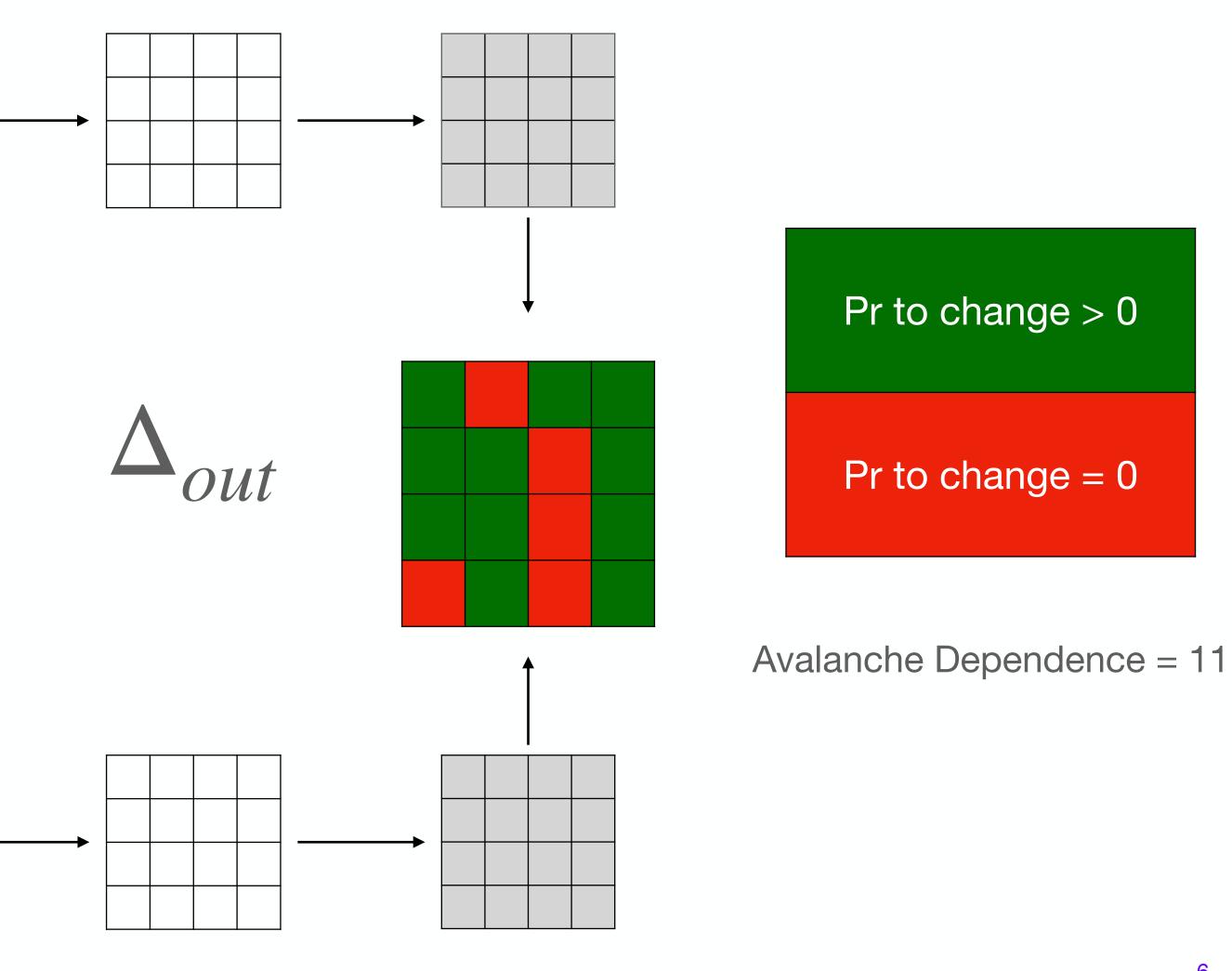
Avalanche Dependence for Input Bit 0

Pr to change > 0

Pr to change = 0

Avalanche Dependence = 11



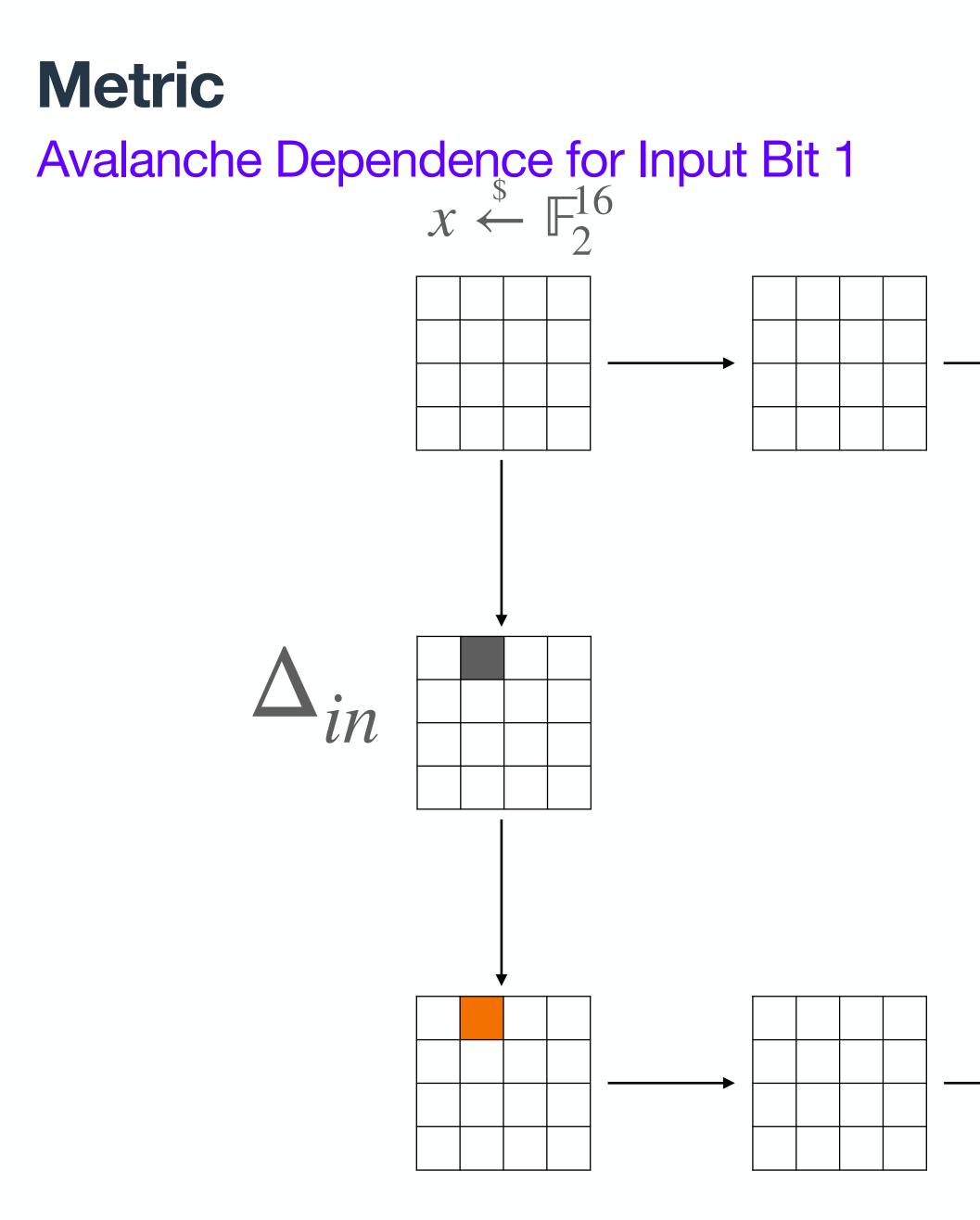


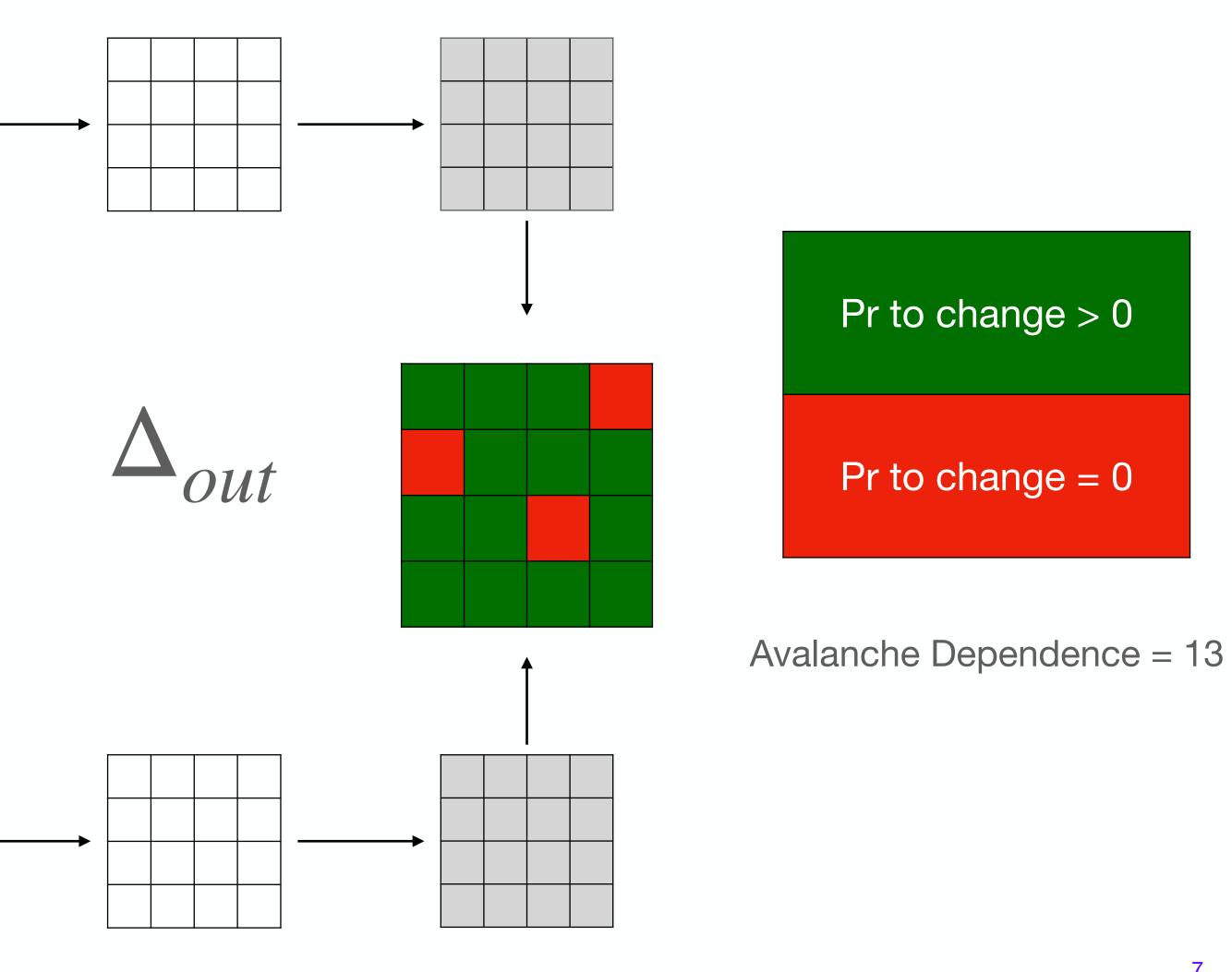
Avalanche Dependence for Input Bit 1

Pr to change > 0

Pr to change = 0

Avalanche Dependence = 13



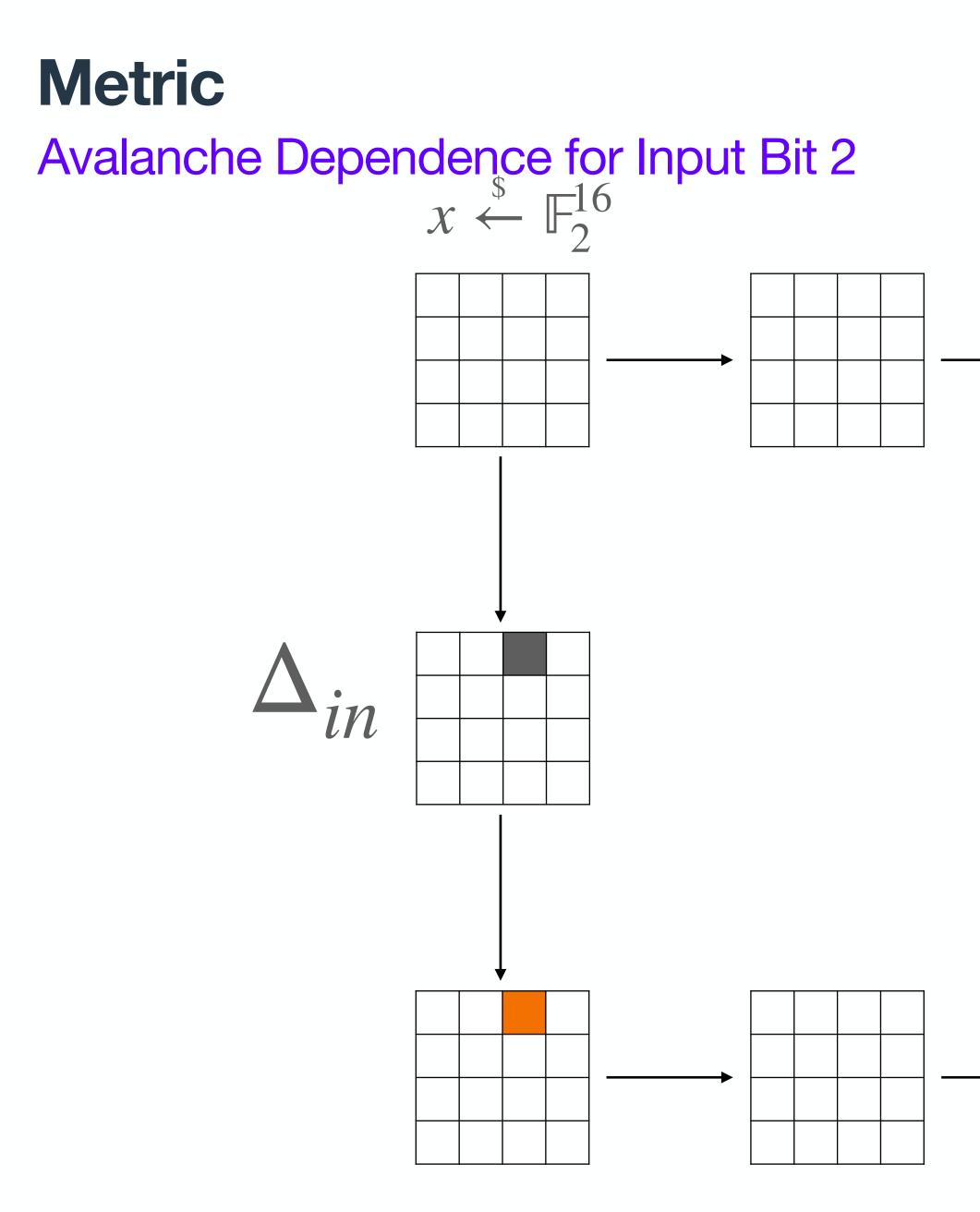


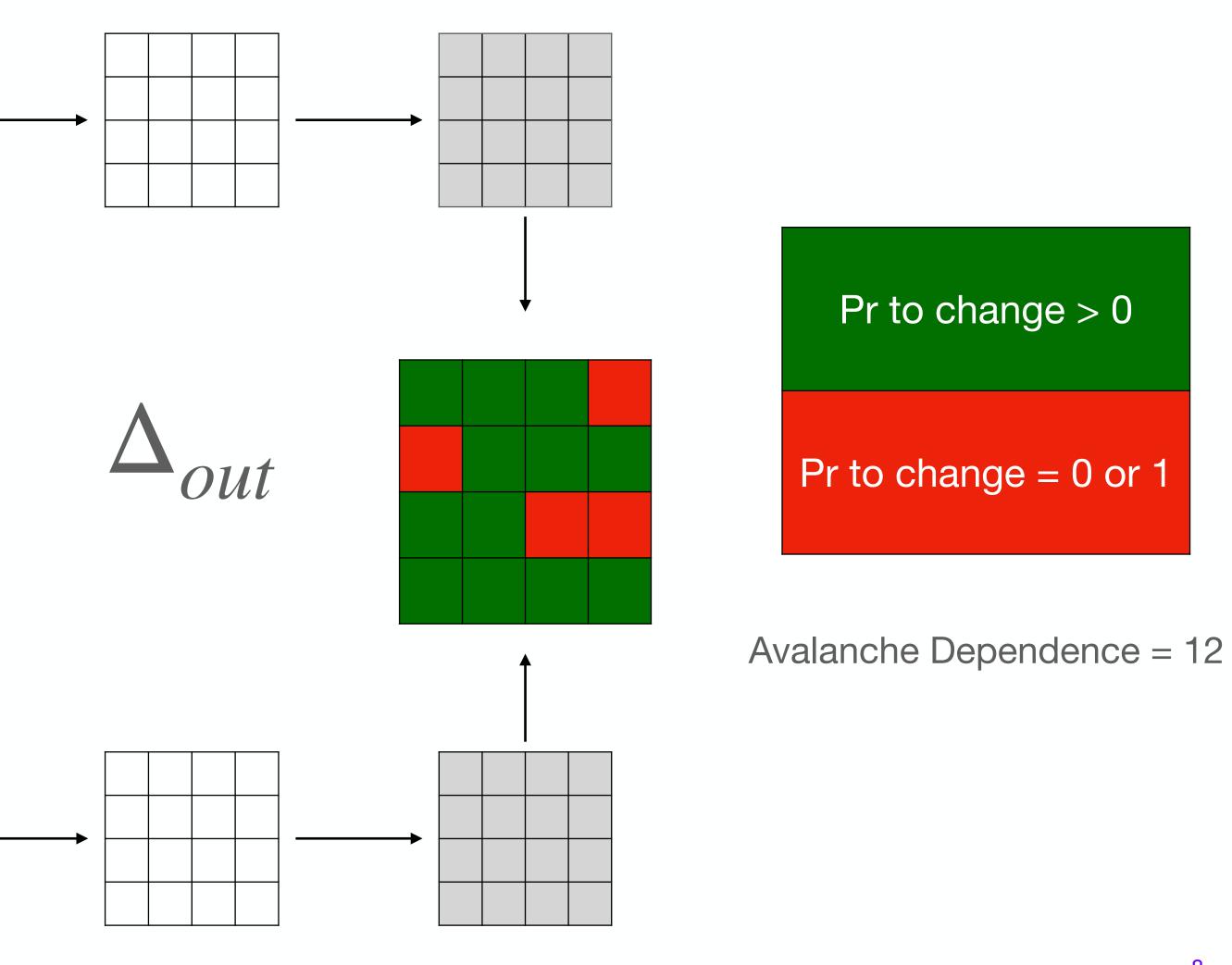
Avalanche Dependence for Input Bit 2

Pr to change > 0

Pr to change = 0 or 1

Avalanche Dependence = 12





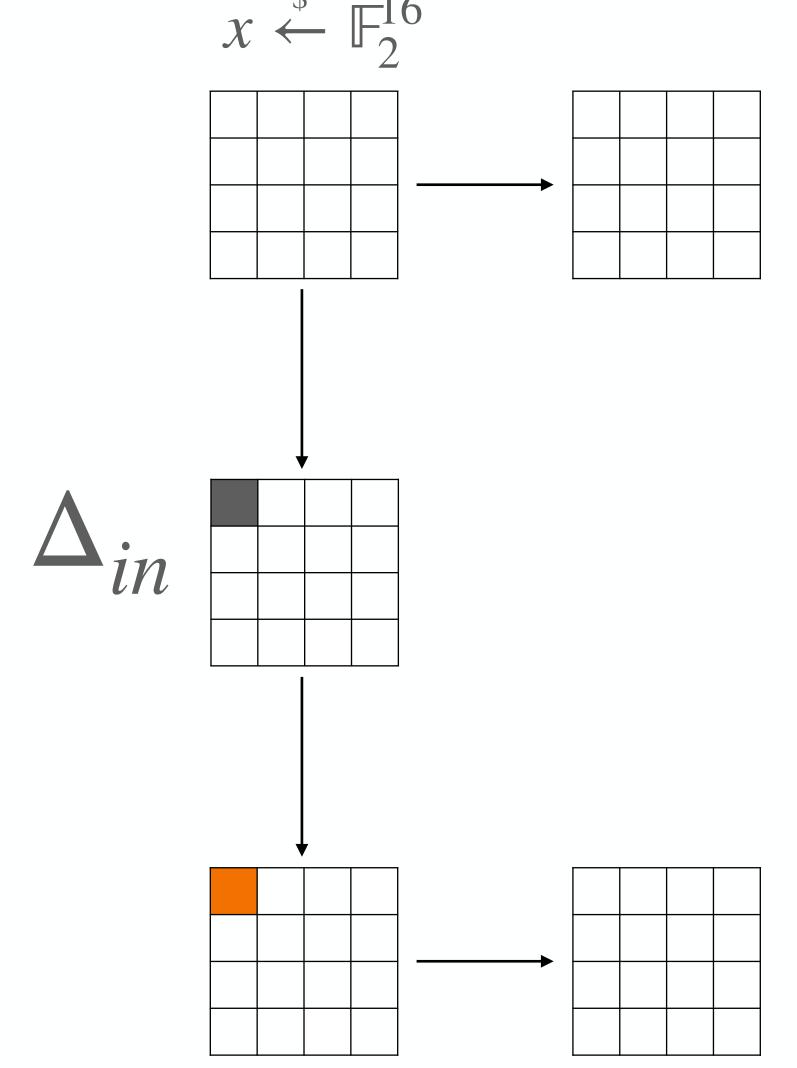
Avalanche Dependence for Input Bit 0 after increasing the number of rounds

Pr to change > 0

Pr to change = 0

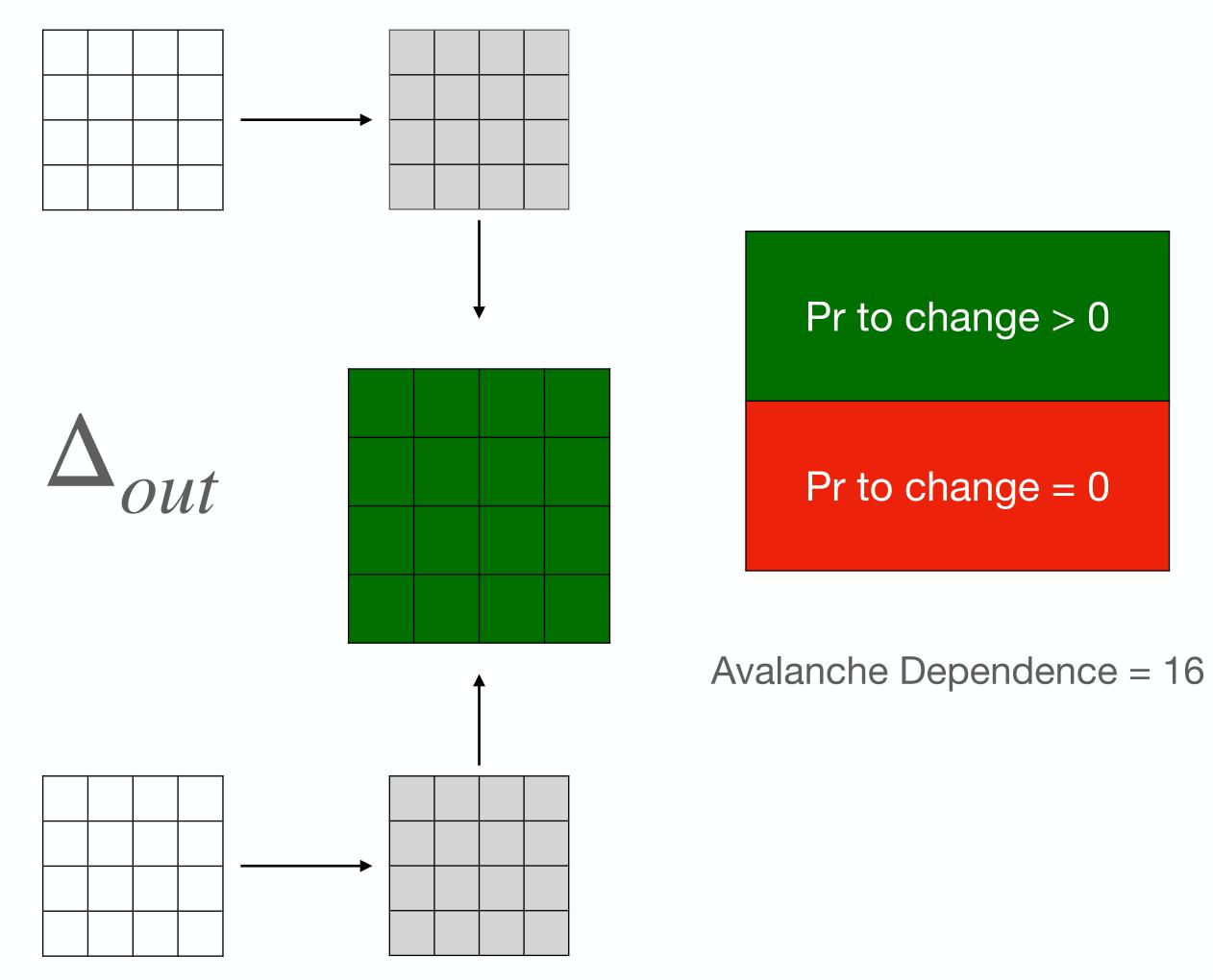
Avalanche Dependence = 16

Avalanche Dependence for Input Bit 0 after increasing the number of rounds $x \leftarrow \mathbb{F}_2^{16}$



. . .

. . .



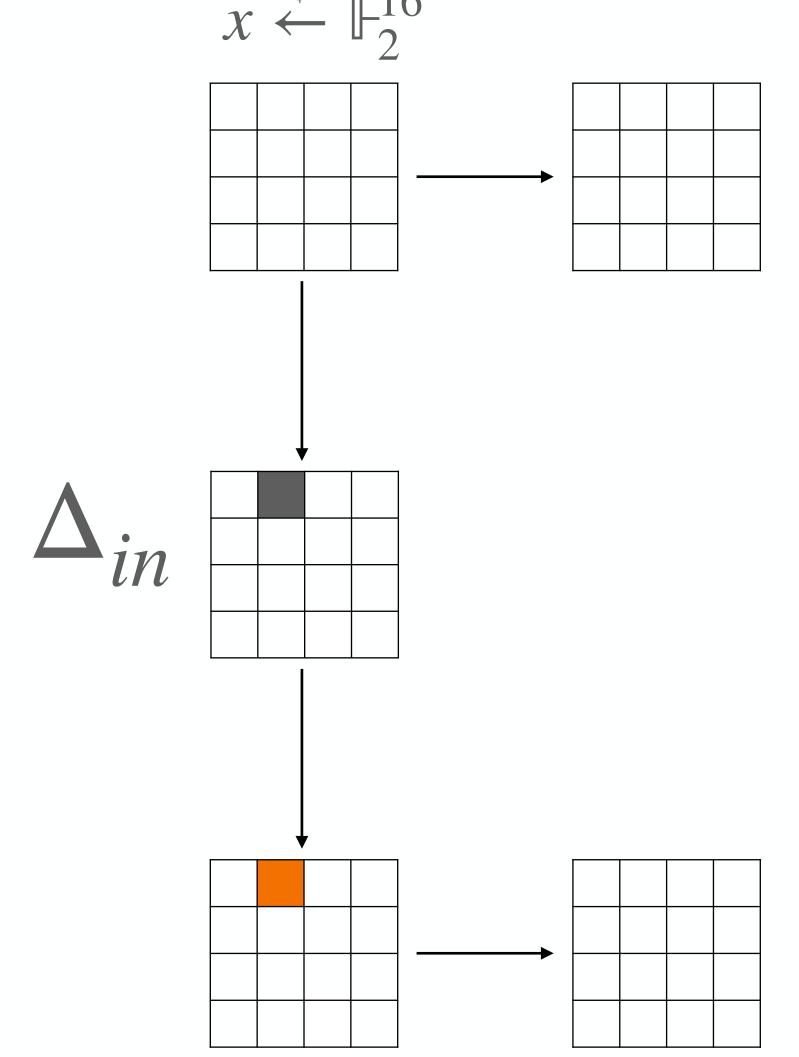
Avalanche Dependence for Input Bit 1 after increasing the number of rounds

Pr to change > 0

Pr to change = 0

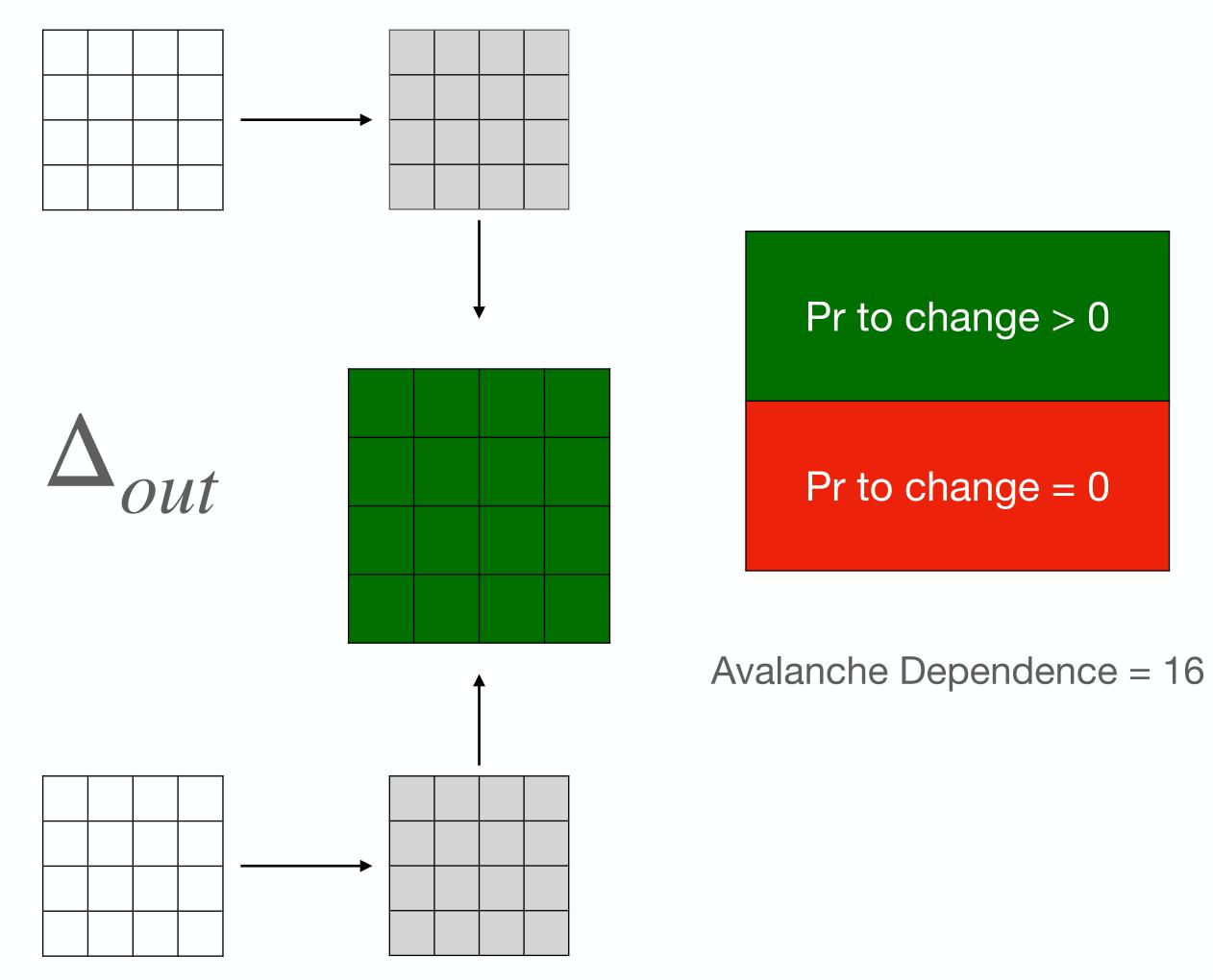
Avalanche Dependence = 16

Avalanche Dependence for Input Bit 1 after increasing the number of rounds $x \leftarrow \mathbb{F}_2^{16}$



. . .

. . .



Full Diffusion Criterion Full-Diffusion

If the number of output bits that may flip for every input single bit difference is the size of the cipher The full-diffusion criterion is satisfied if $D_{av}(F, \Delta) = b$ for all Δ with Hamming weight 1.

Other two metrics [Webster85]

н	0
	2

Other two metrics [Webster85]

Avalanche Weight -> Avalanche Criterion

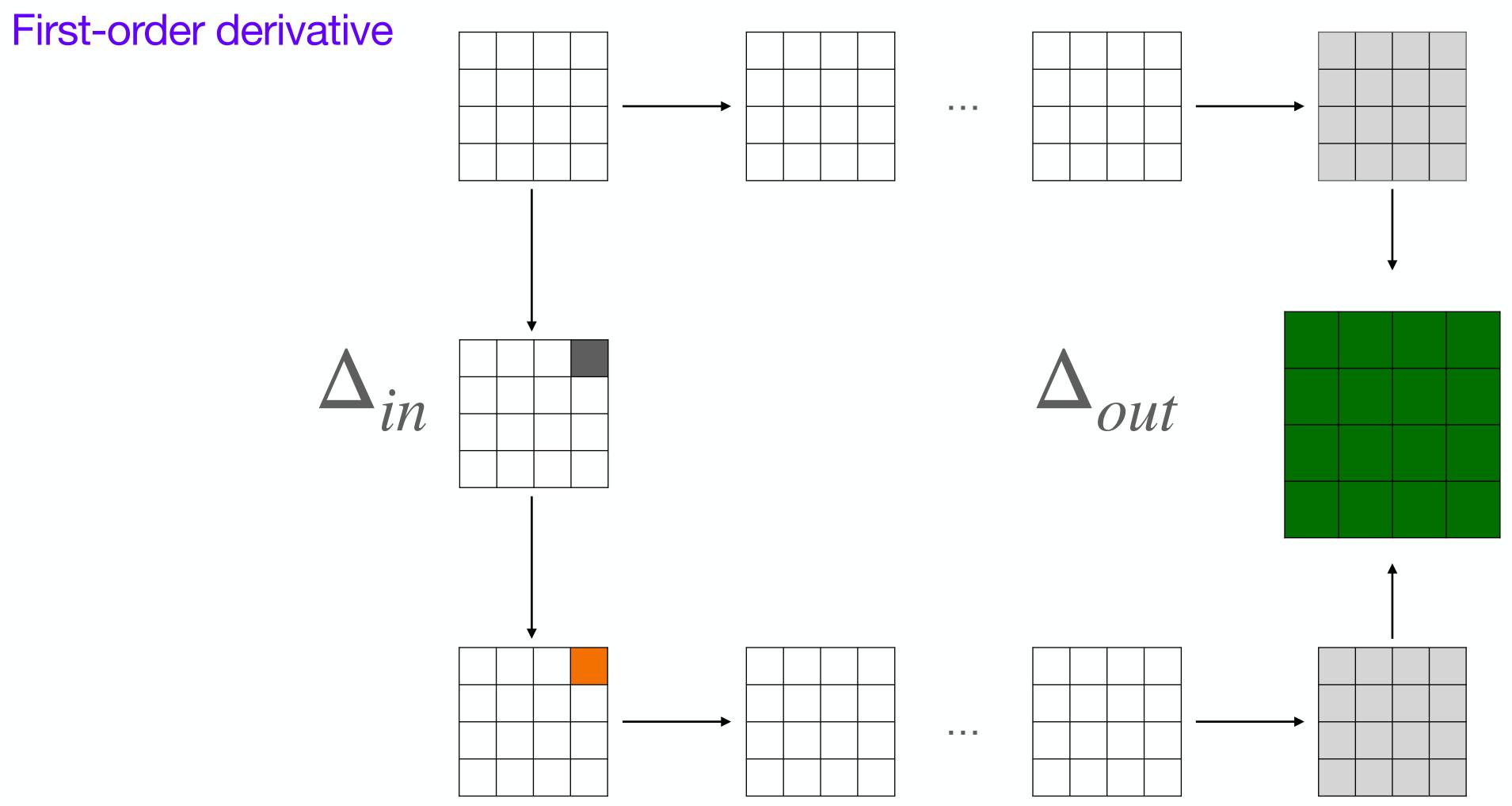
н	0
	2

Other two metrics [Webster85]

- Avalanche Weight -> Avalanche Criterion
- Avalanche Entropy -> Strict Avalanche Criterion

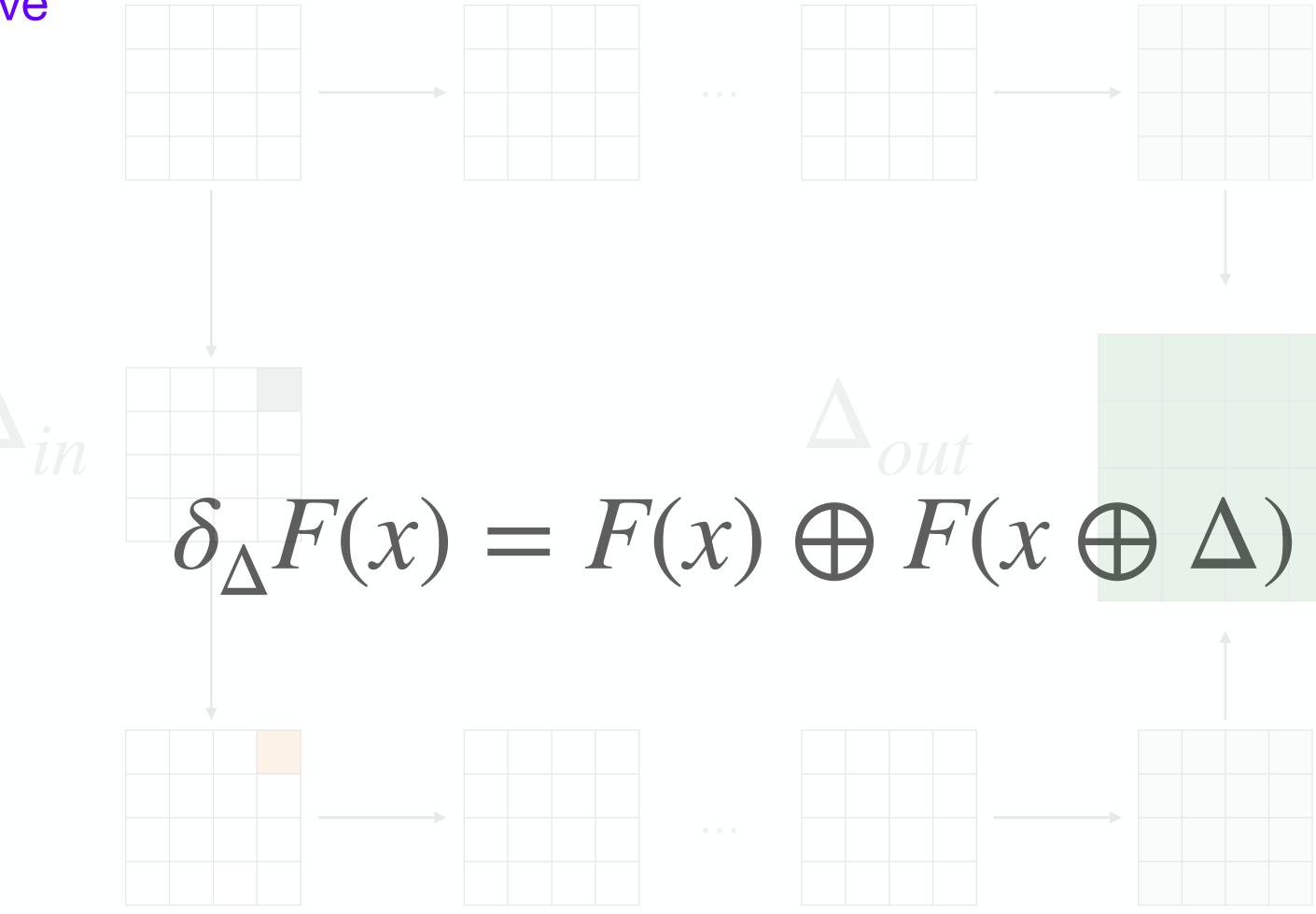
н	0
	2

The process to compute the metrics involve first-order derivative



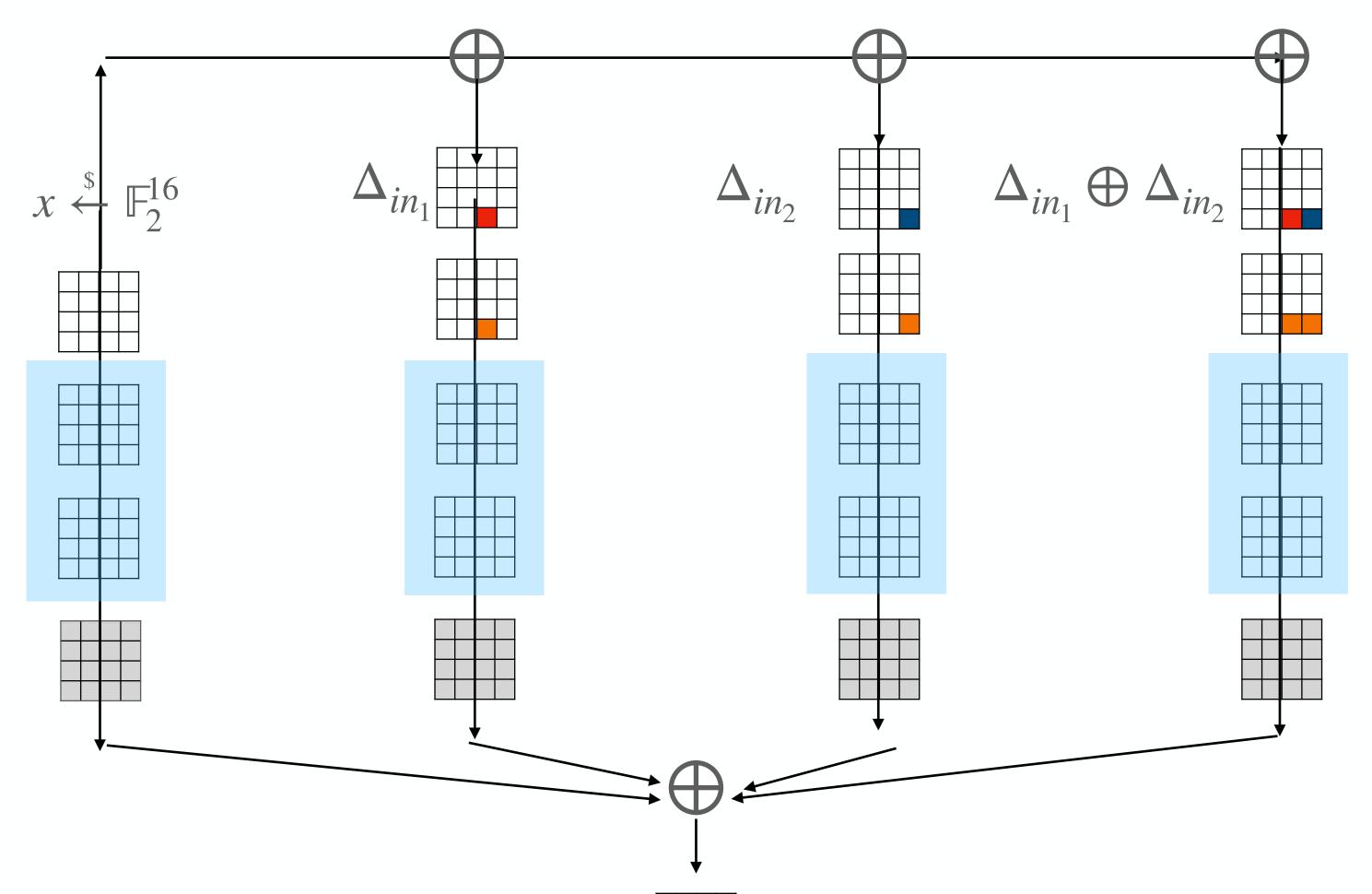
The process to compute the metrics involve first-order derivative

First-order derivative



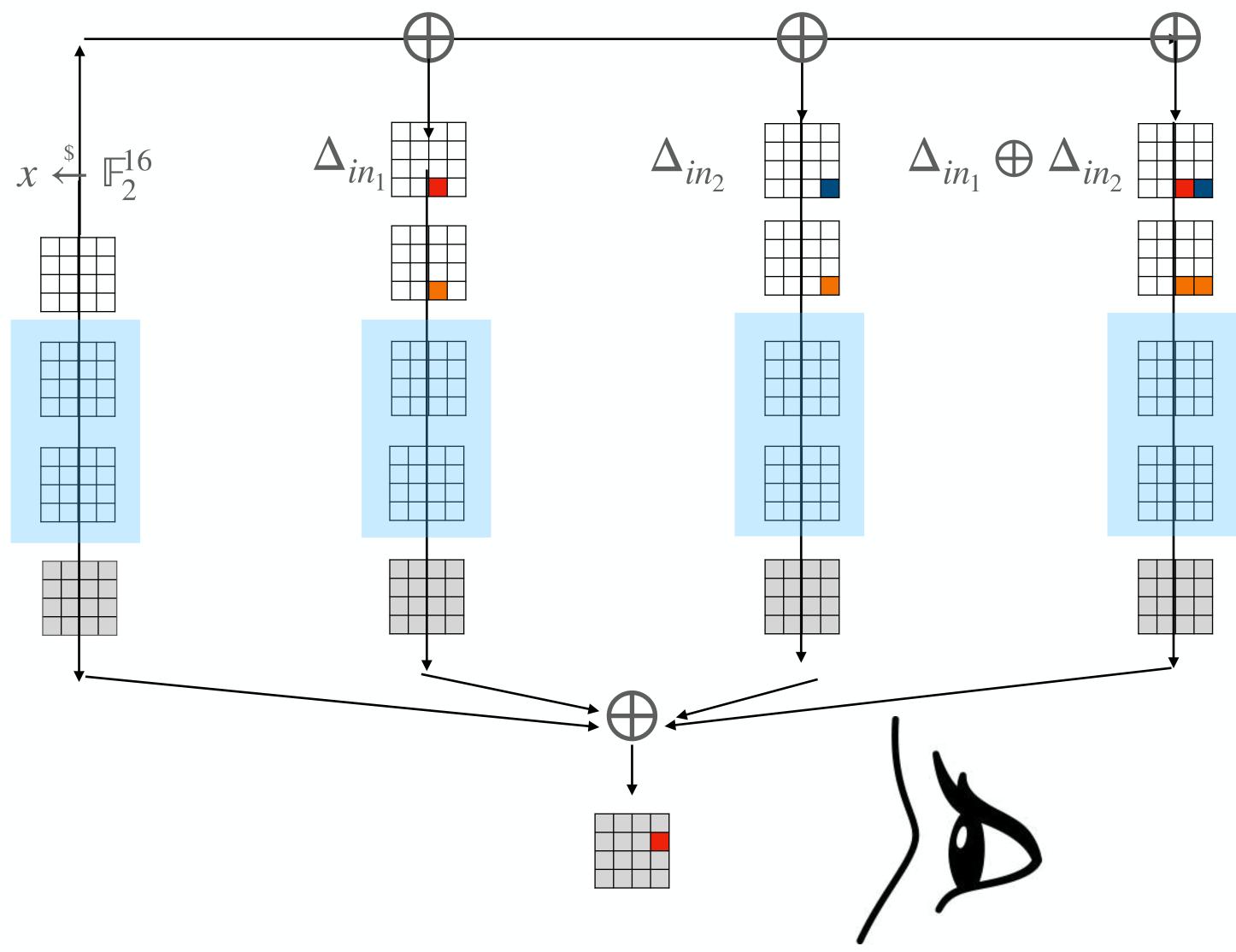
High-order differential distinguisher

Truncated Differential Distinguisher of a 2-round symmetric primitive



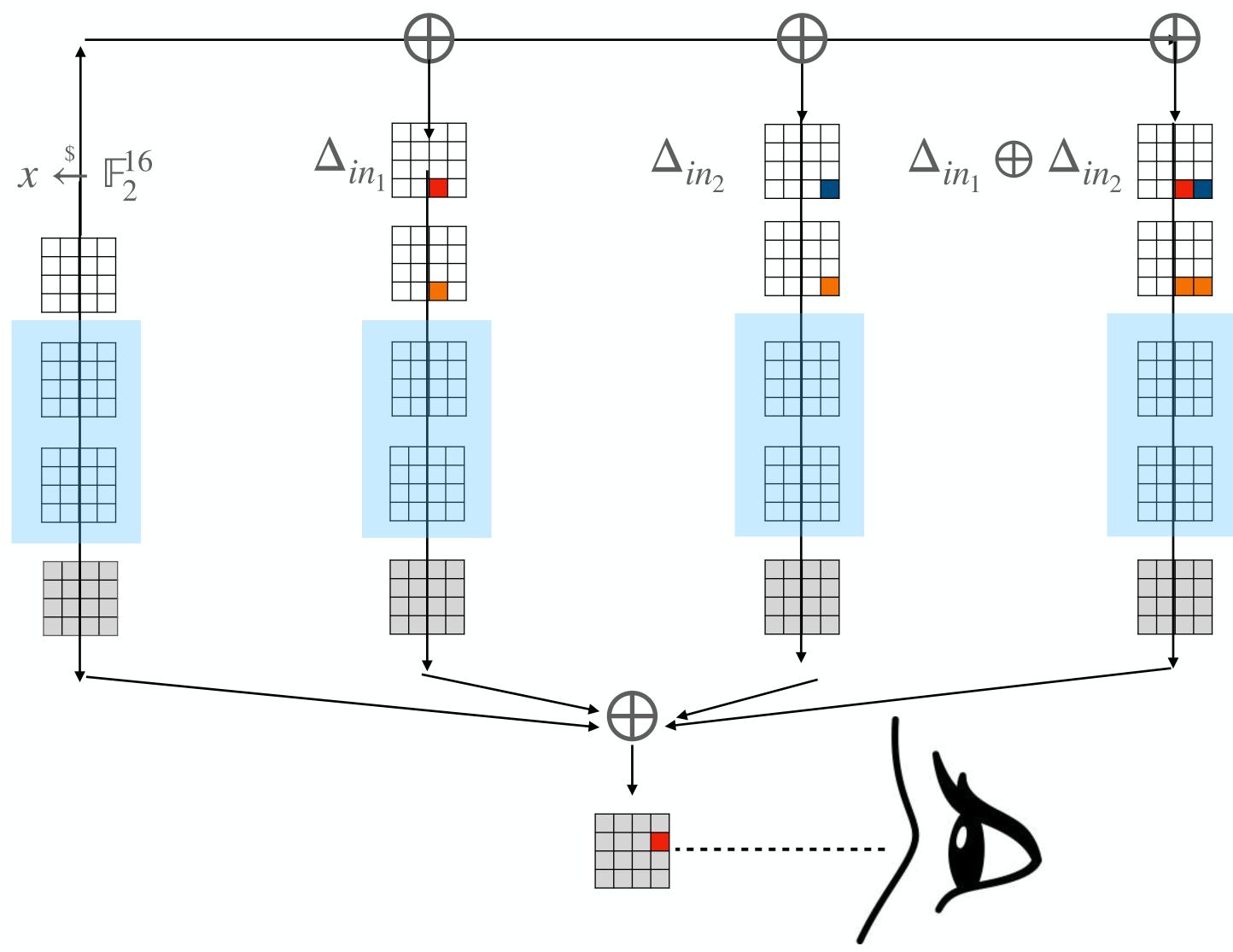
High-order differential distinguisher

Truncated Differential Distinguisher of a 2-round symmetric primitive



High-order differential distinguisher

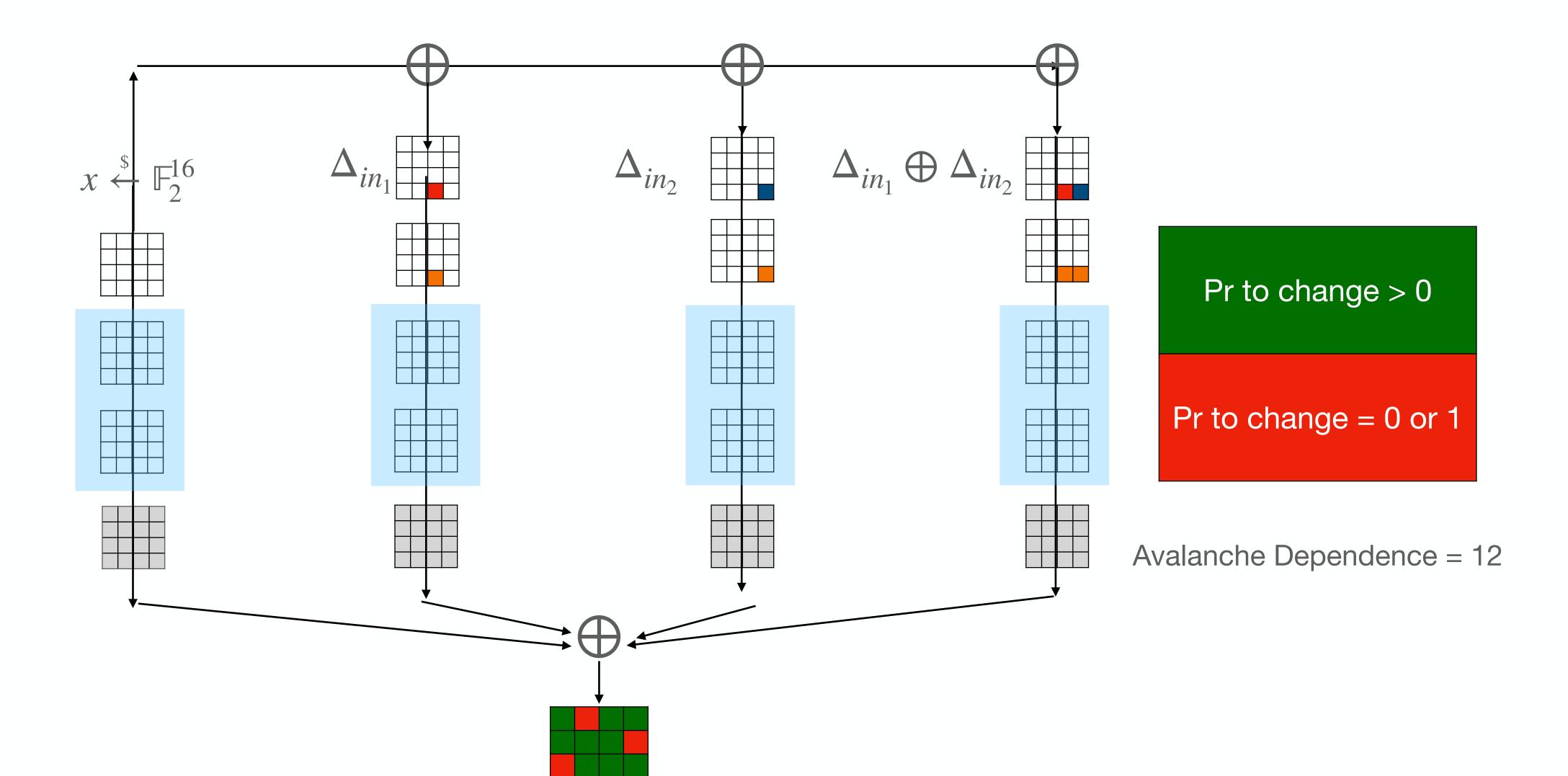
Truncated Differential Distinguisher of a 2-round symmetric primitive

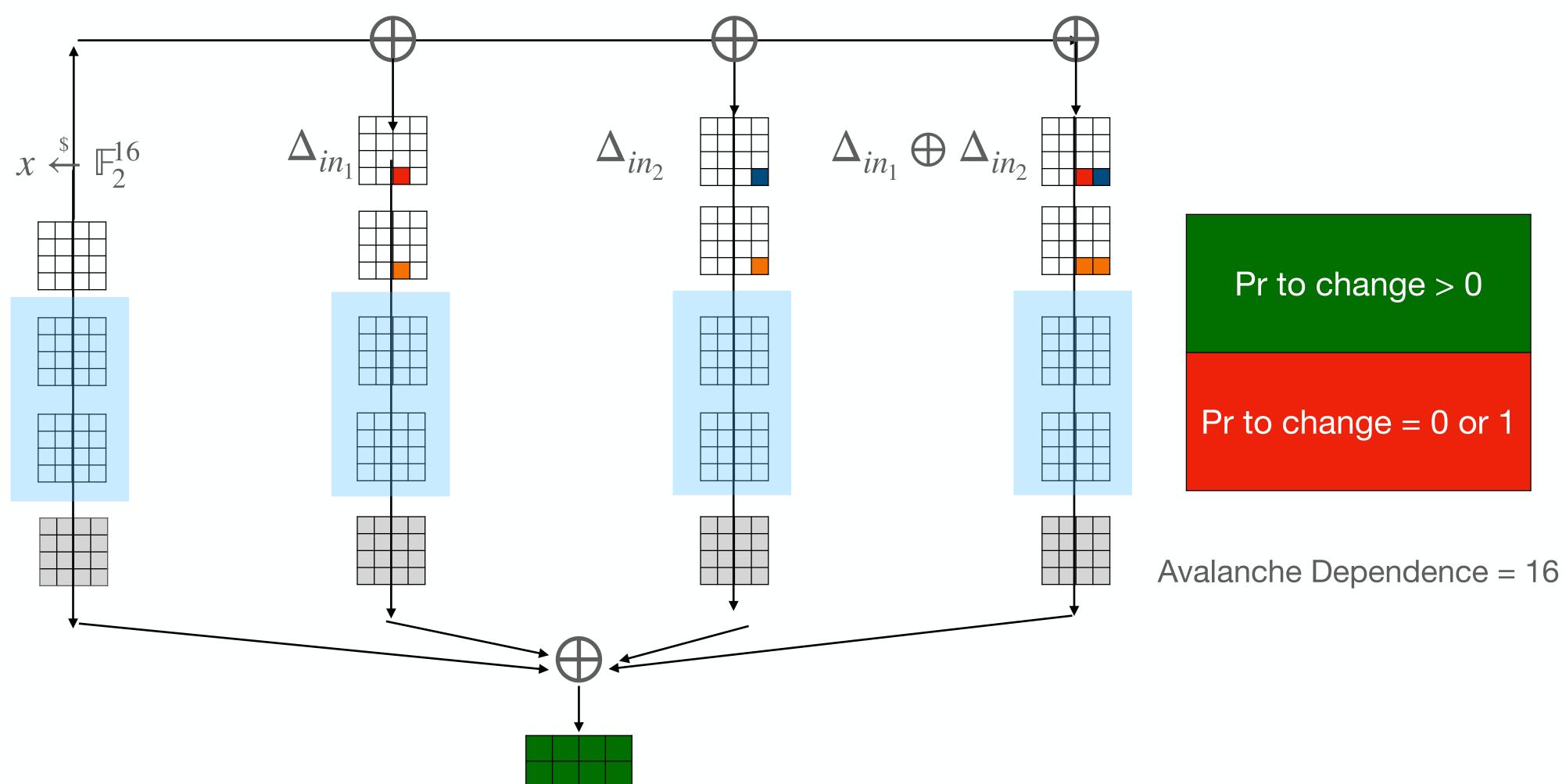


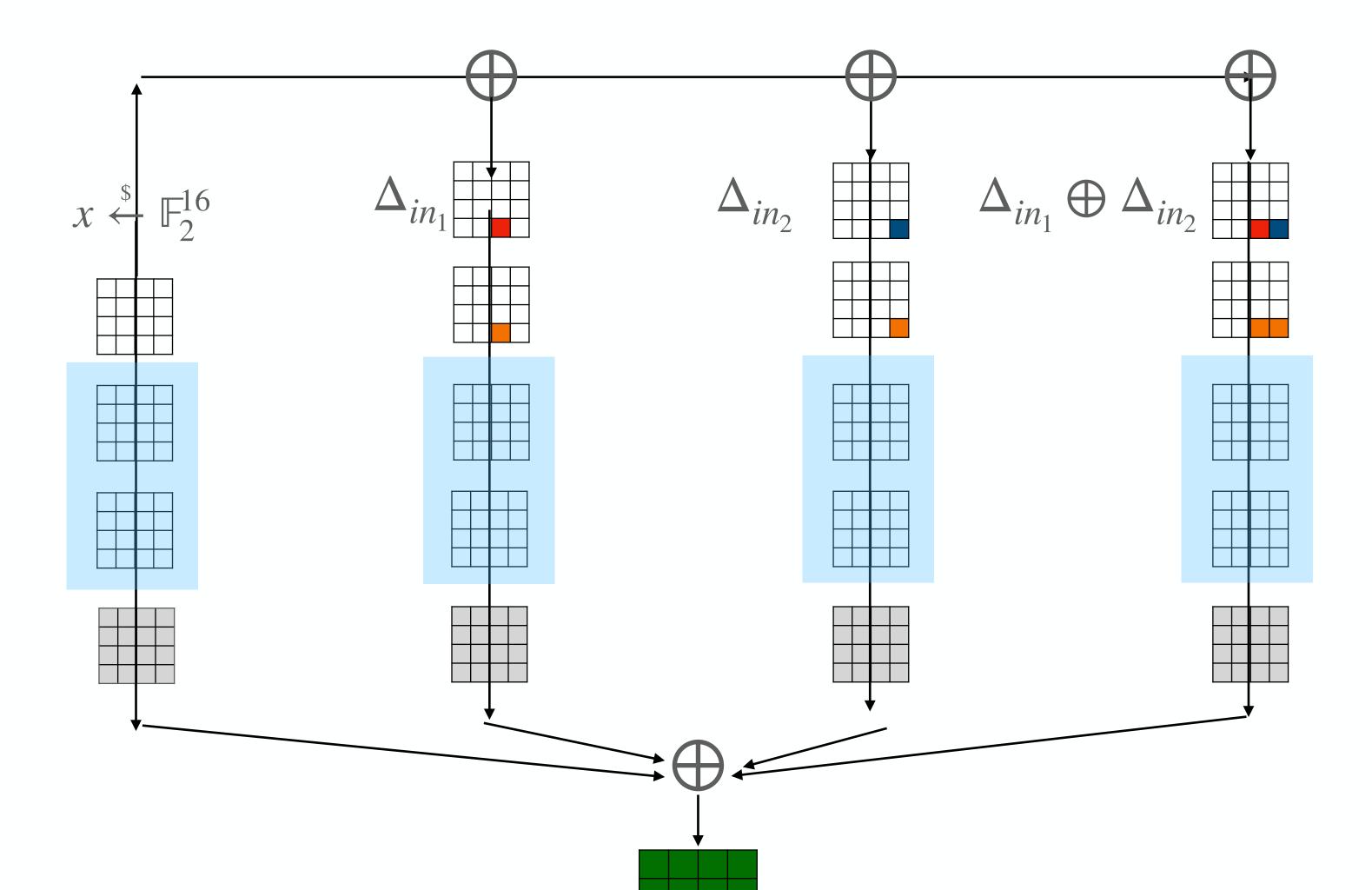
High-order differential distinguisher Truncated Differential Distinguisher of a 2-round symmetric primitive

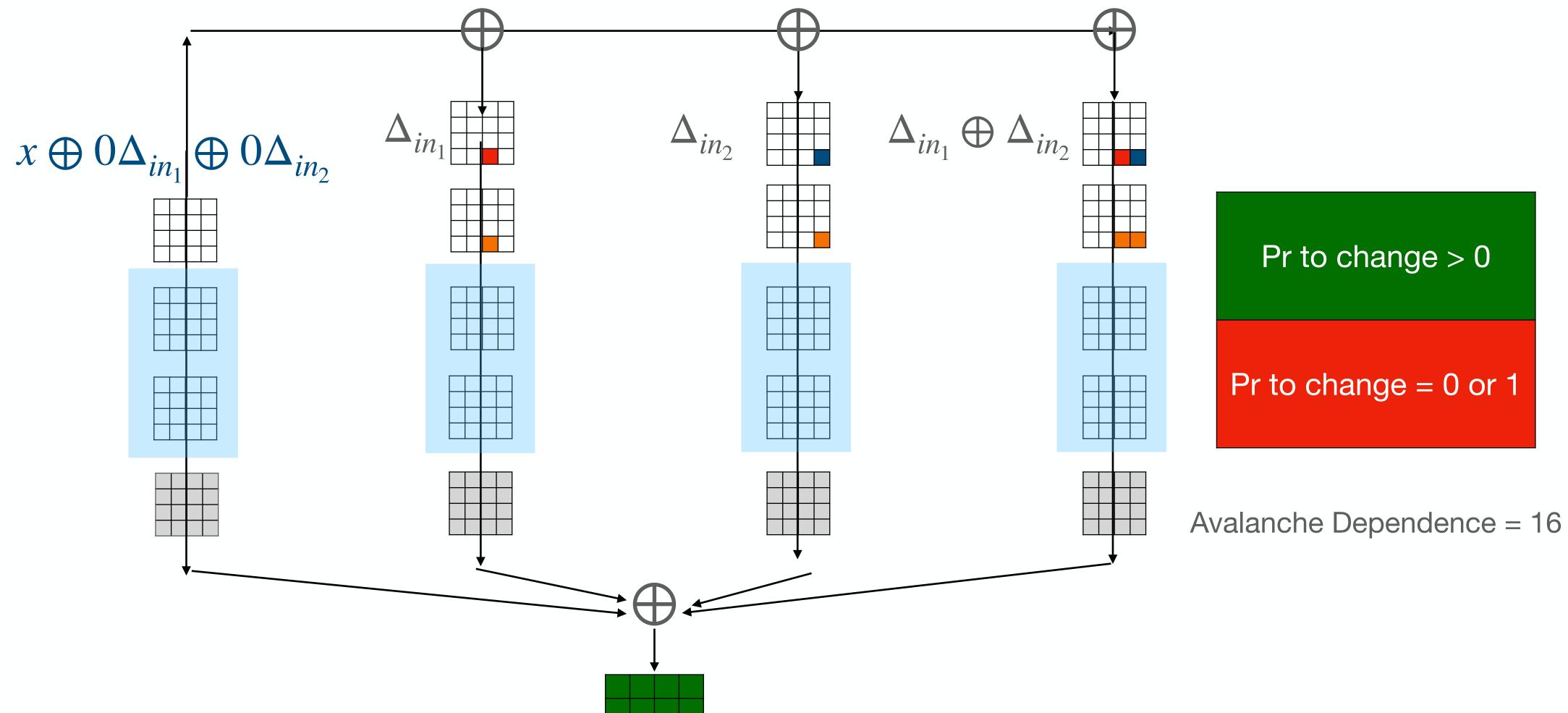
 $\delta_{\Delta_{in_1},\Delta_{in_2}}^{(2)}F(x) = F(x) \oplus F\left(x \oplus \Delta_{in_1}\right) \oplus F\left(x \oplus \Delta_{in_2}\right) \oplus F\left(x \oplus \Delta_{in_1} \oplus \Delta_{in_2}\right)$

Avalanche Dependence for the second order case



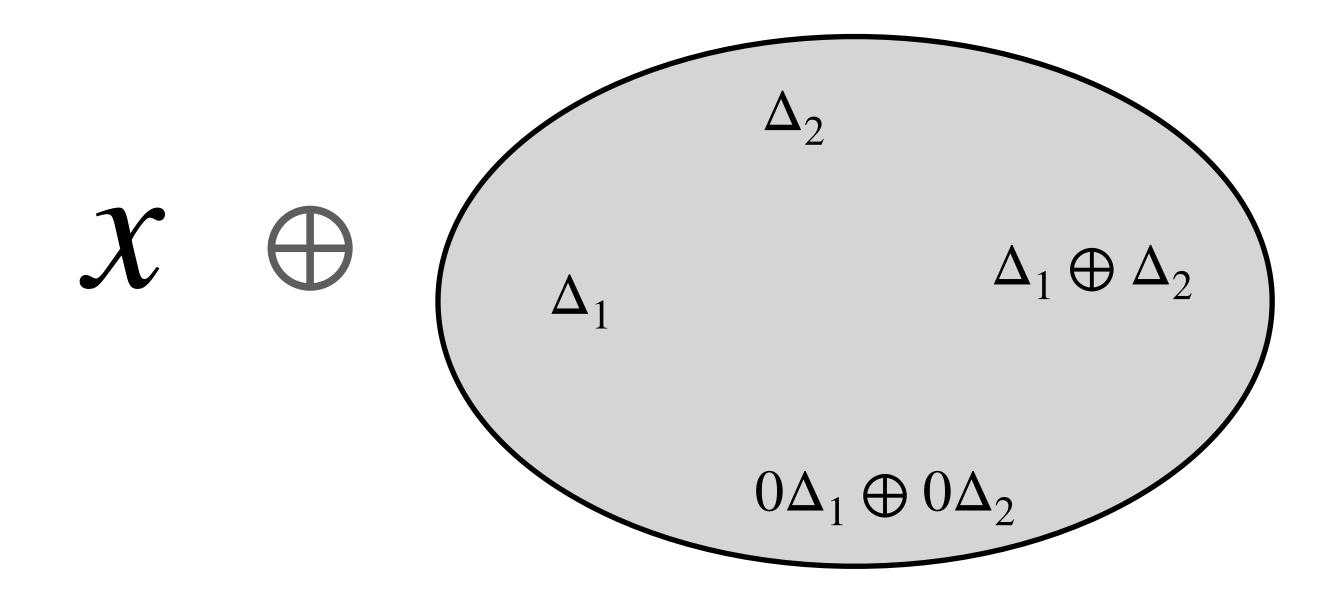


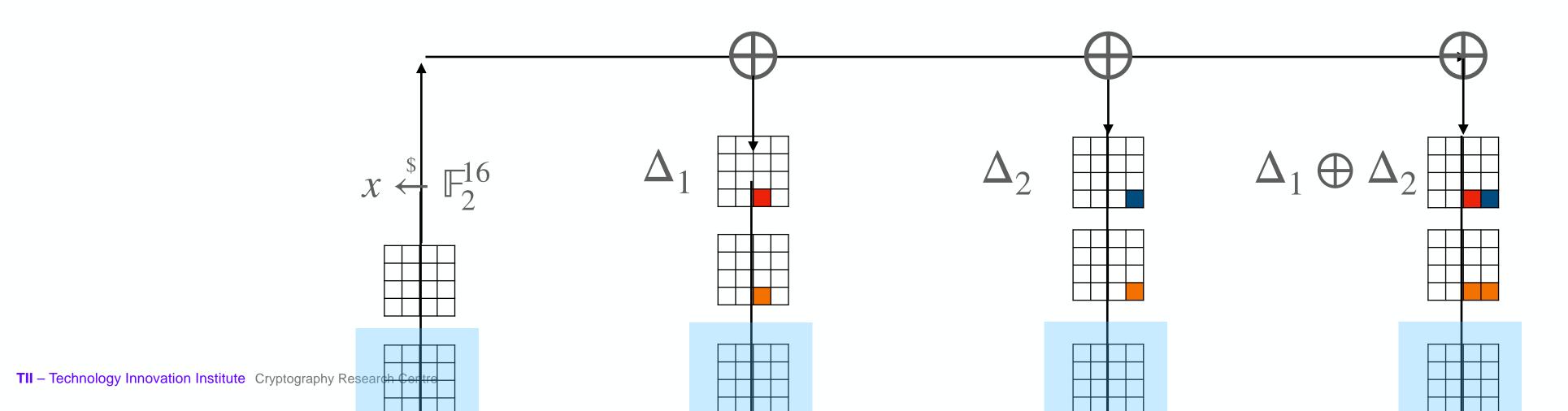


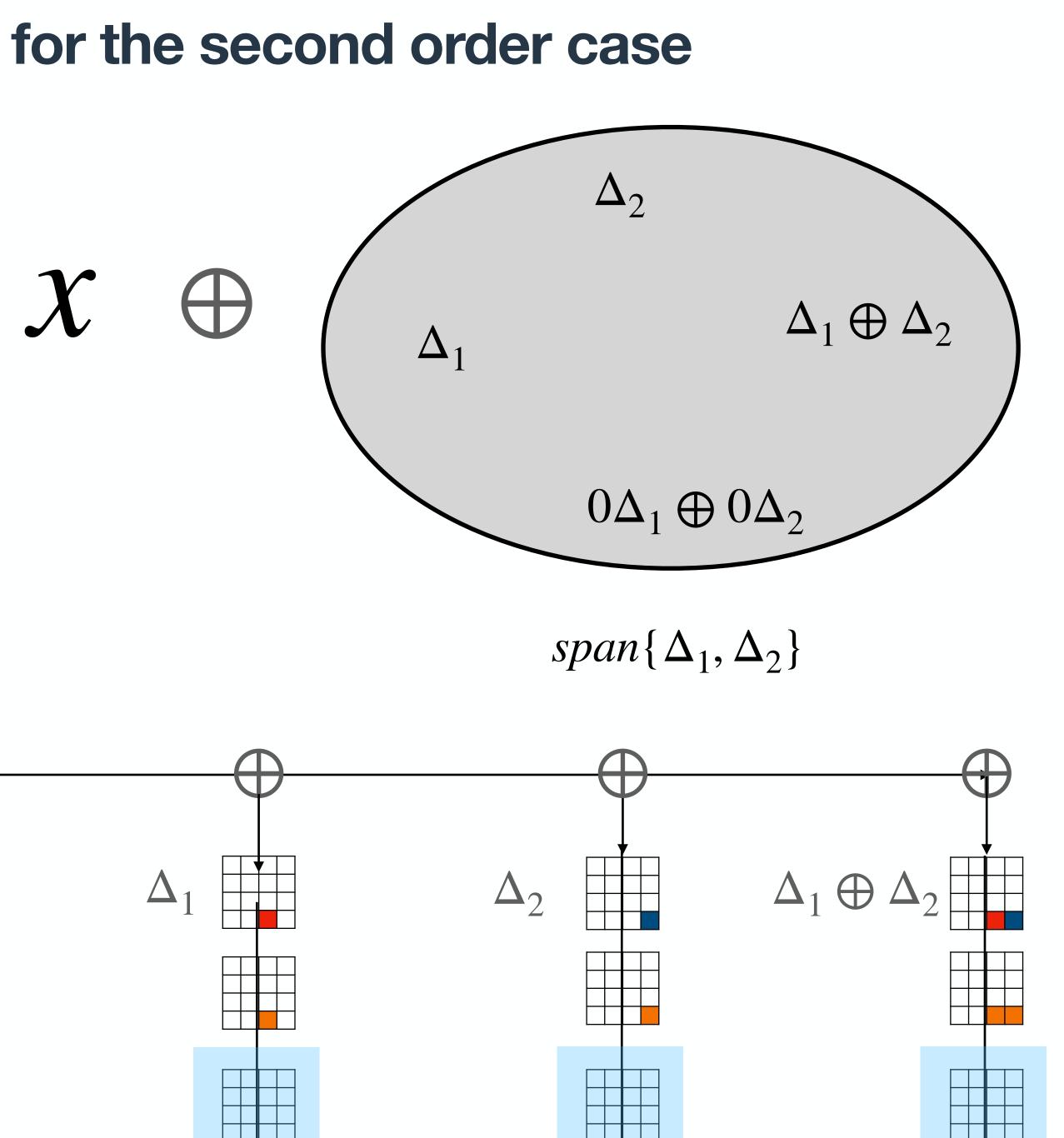


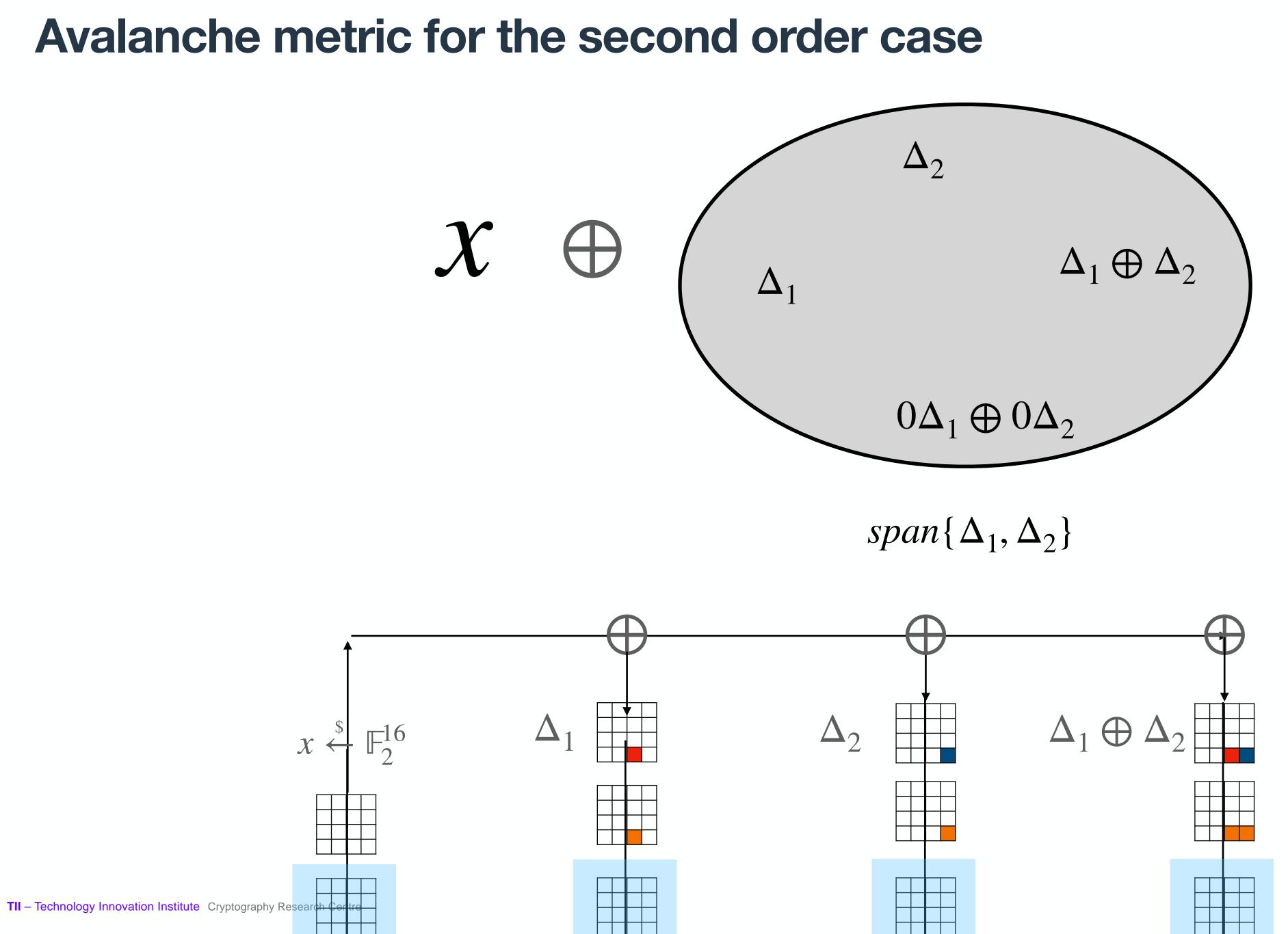


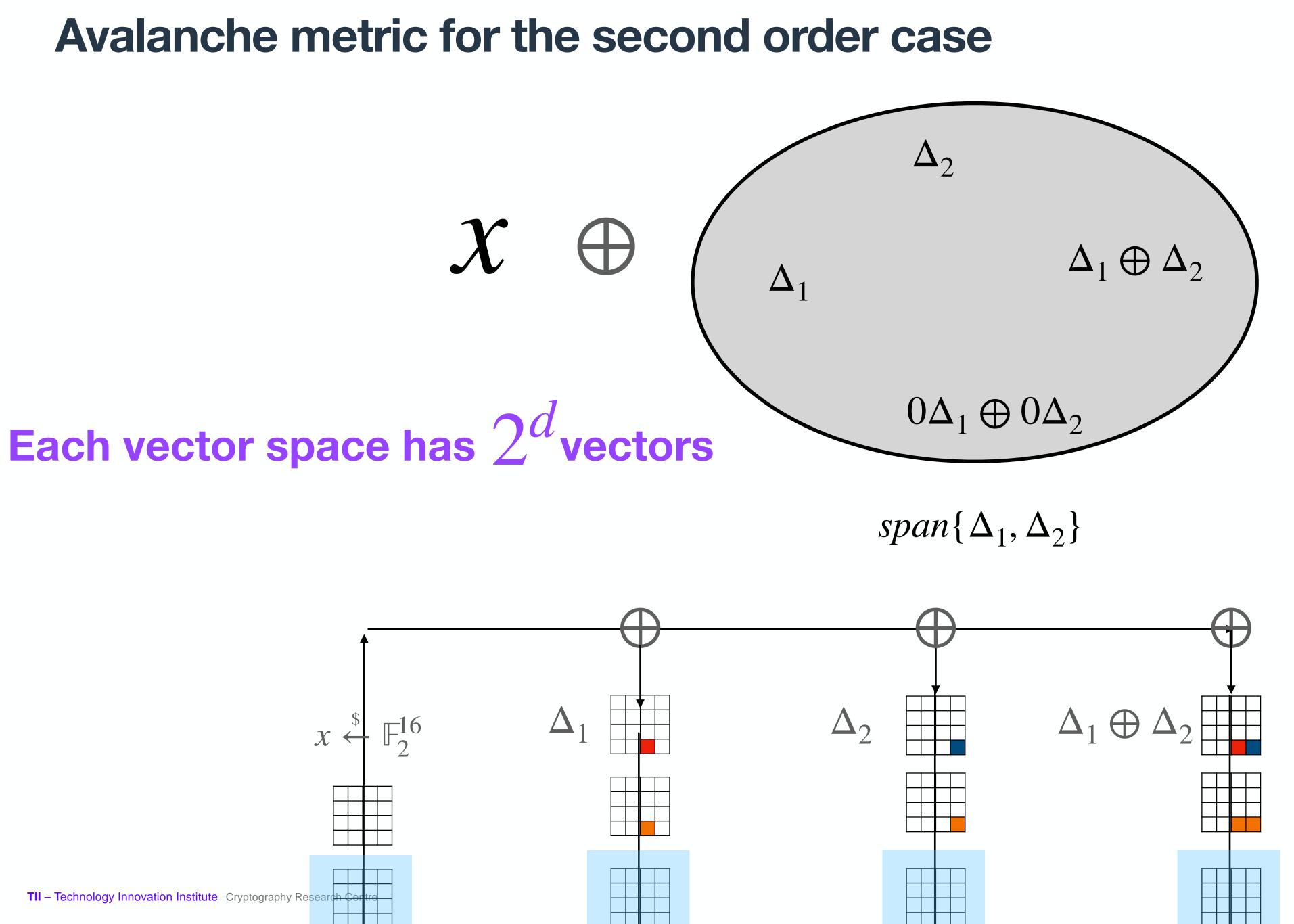
Avalanche metric for the second order case





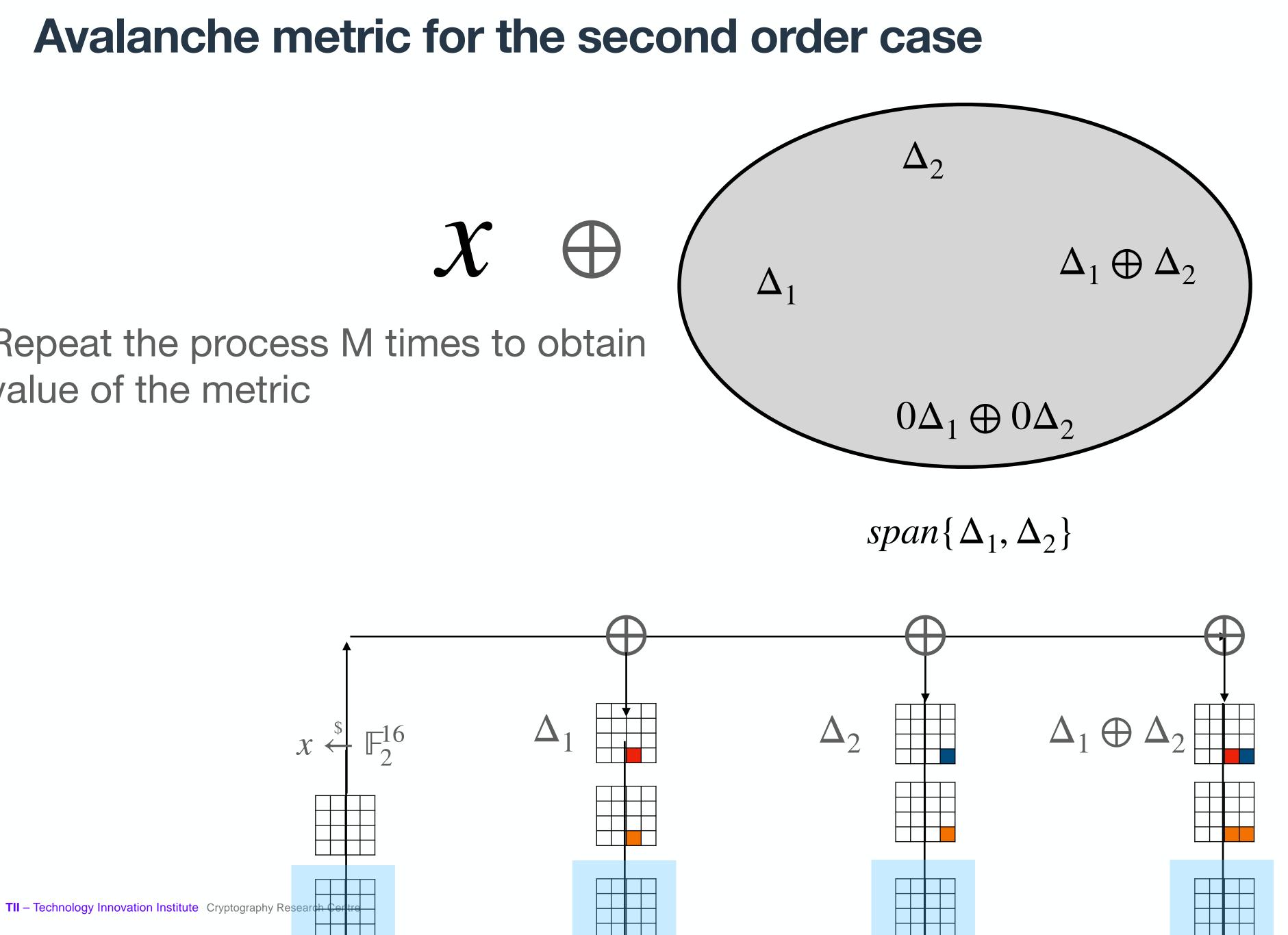


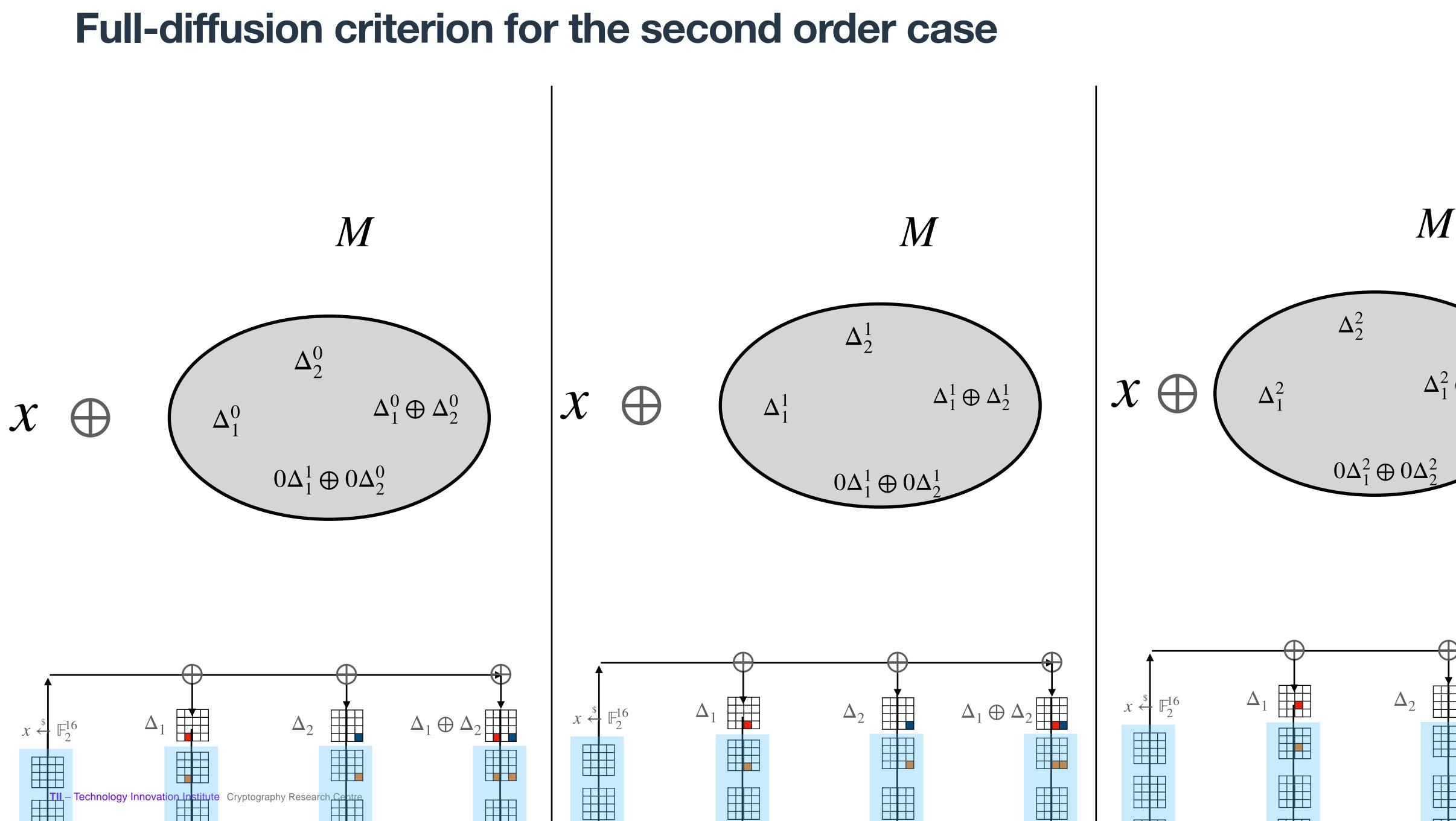


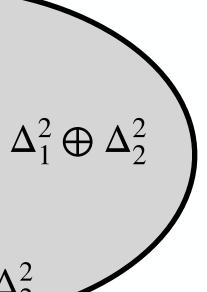


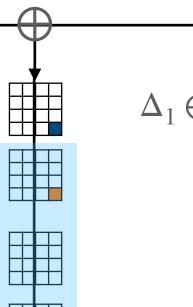


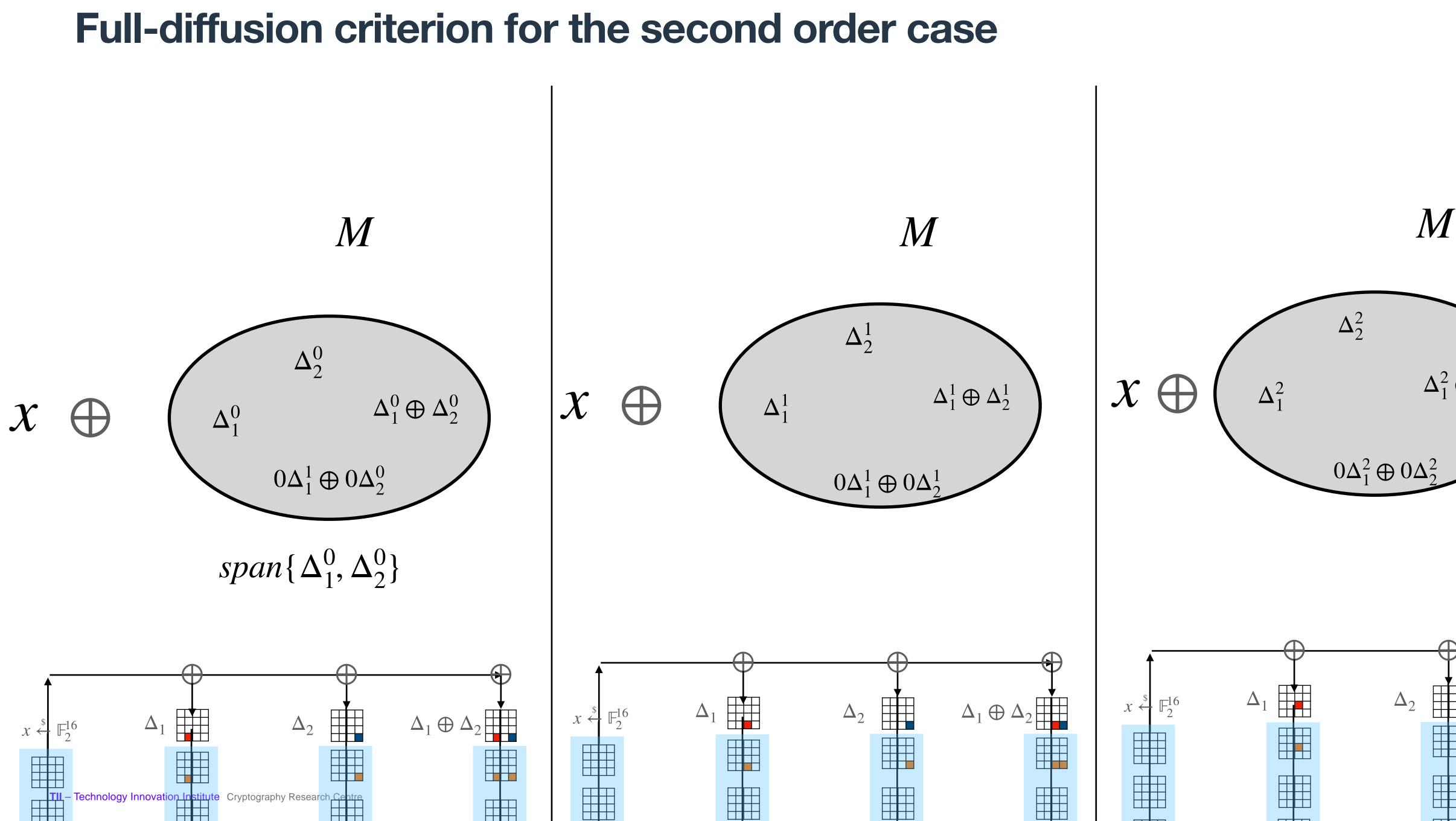
Repeat the process M times to obtain value of the metric

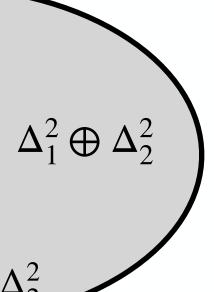


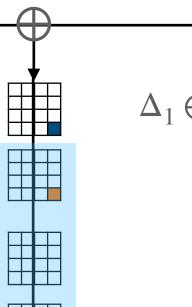


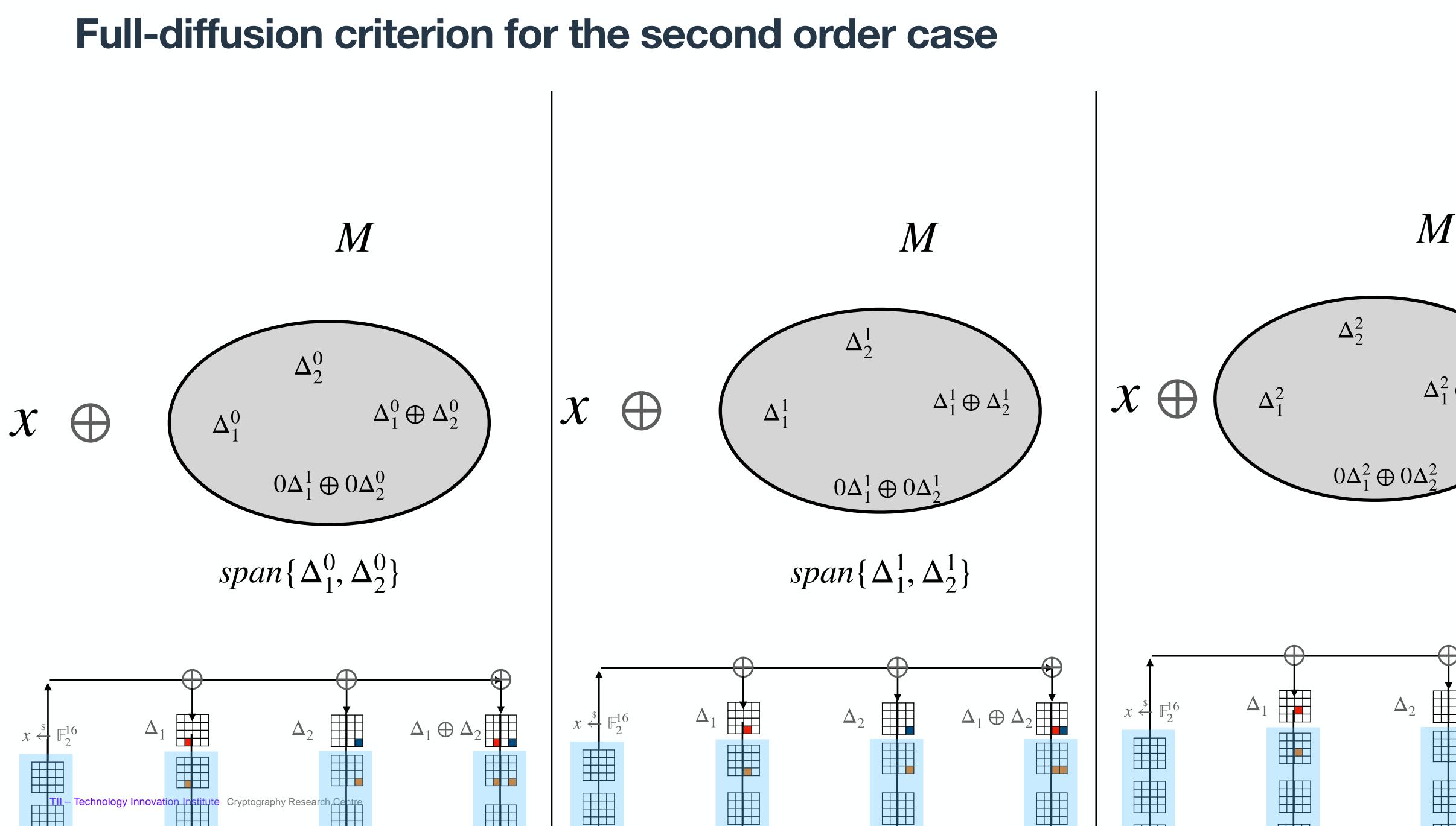


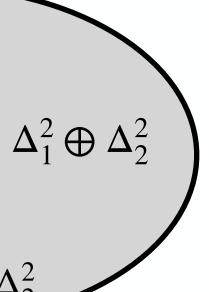


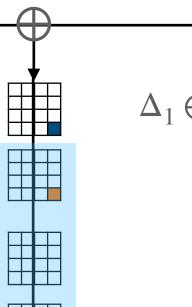


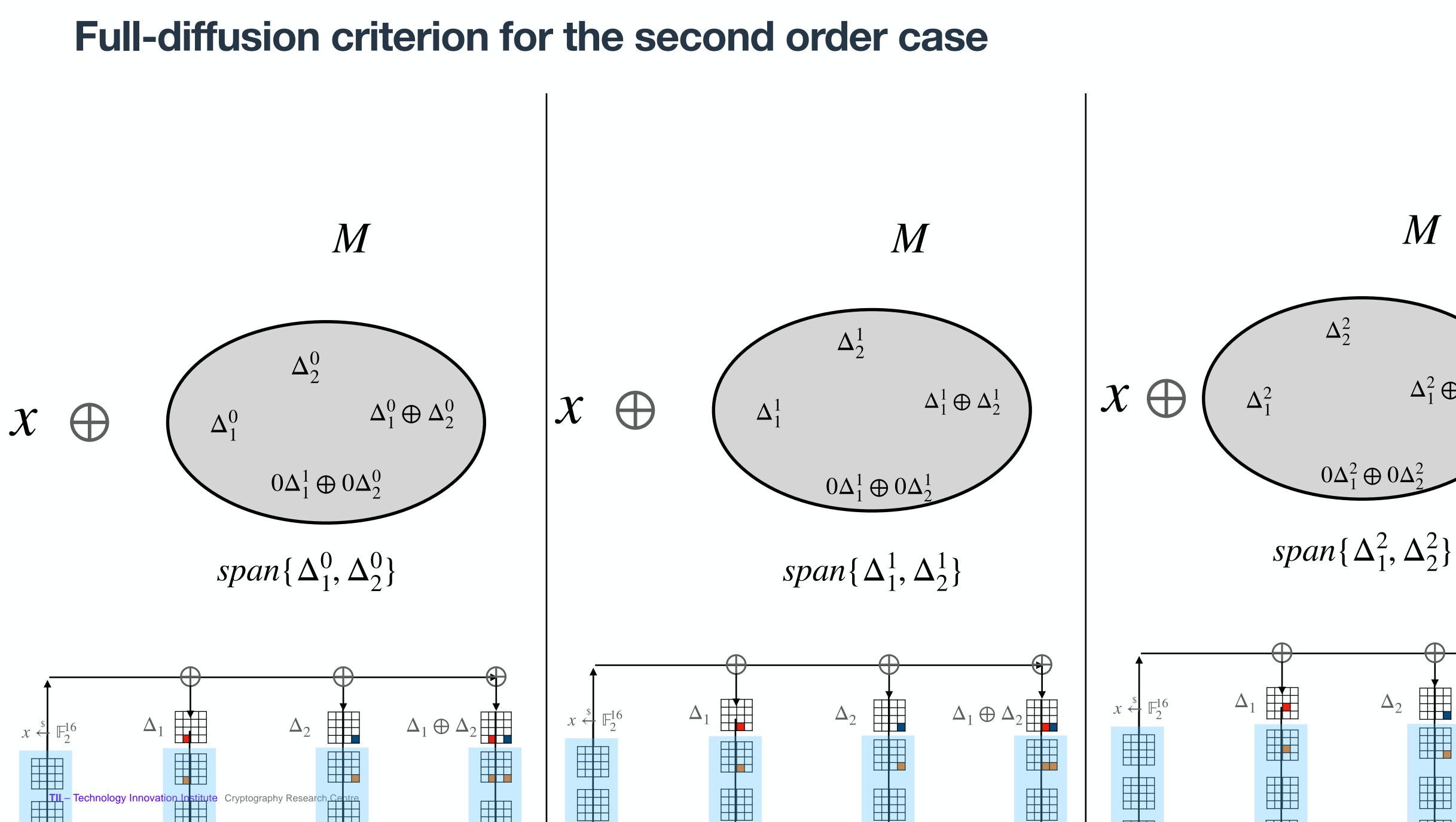




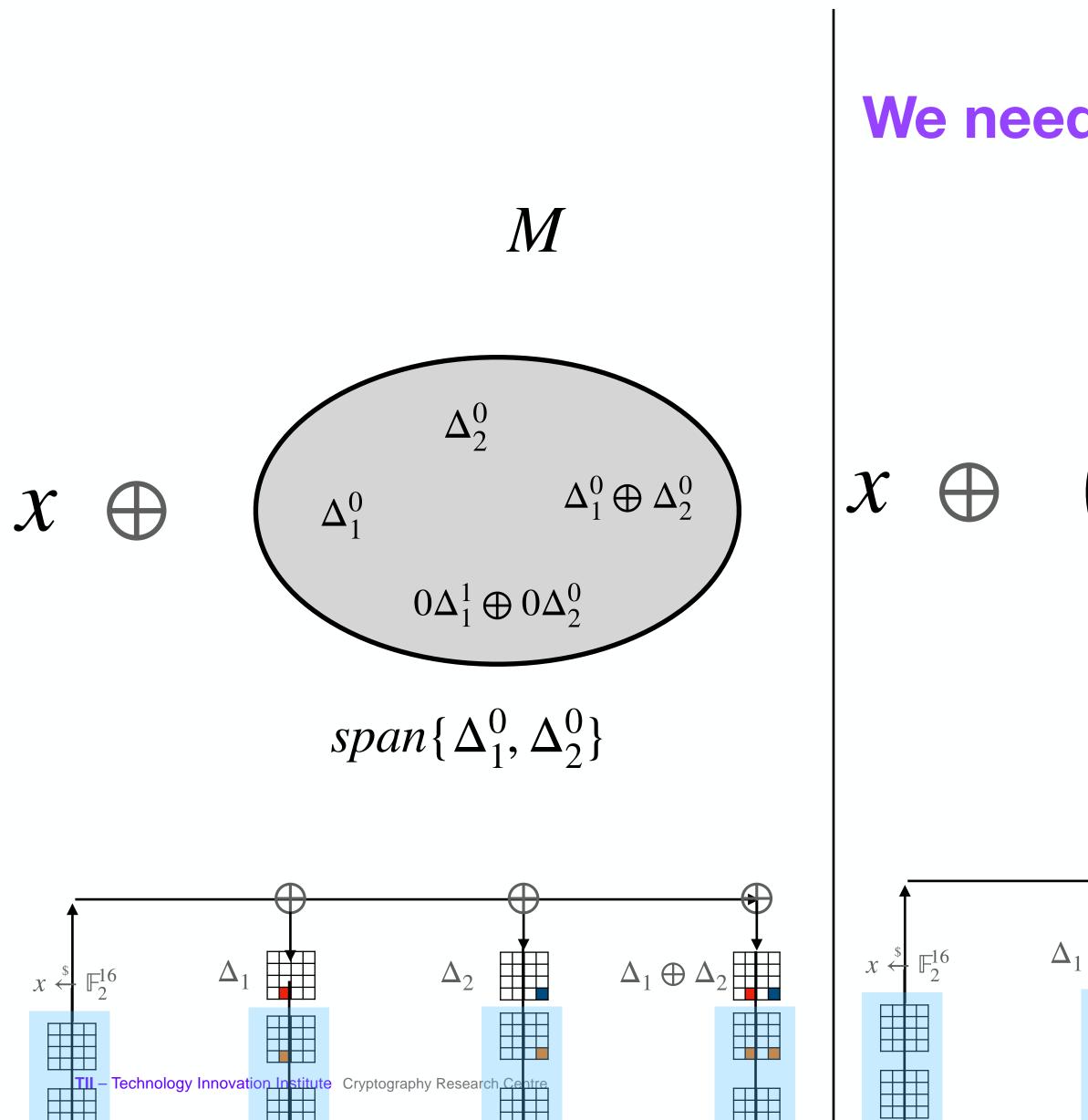


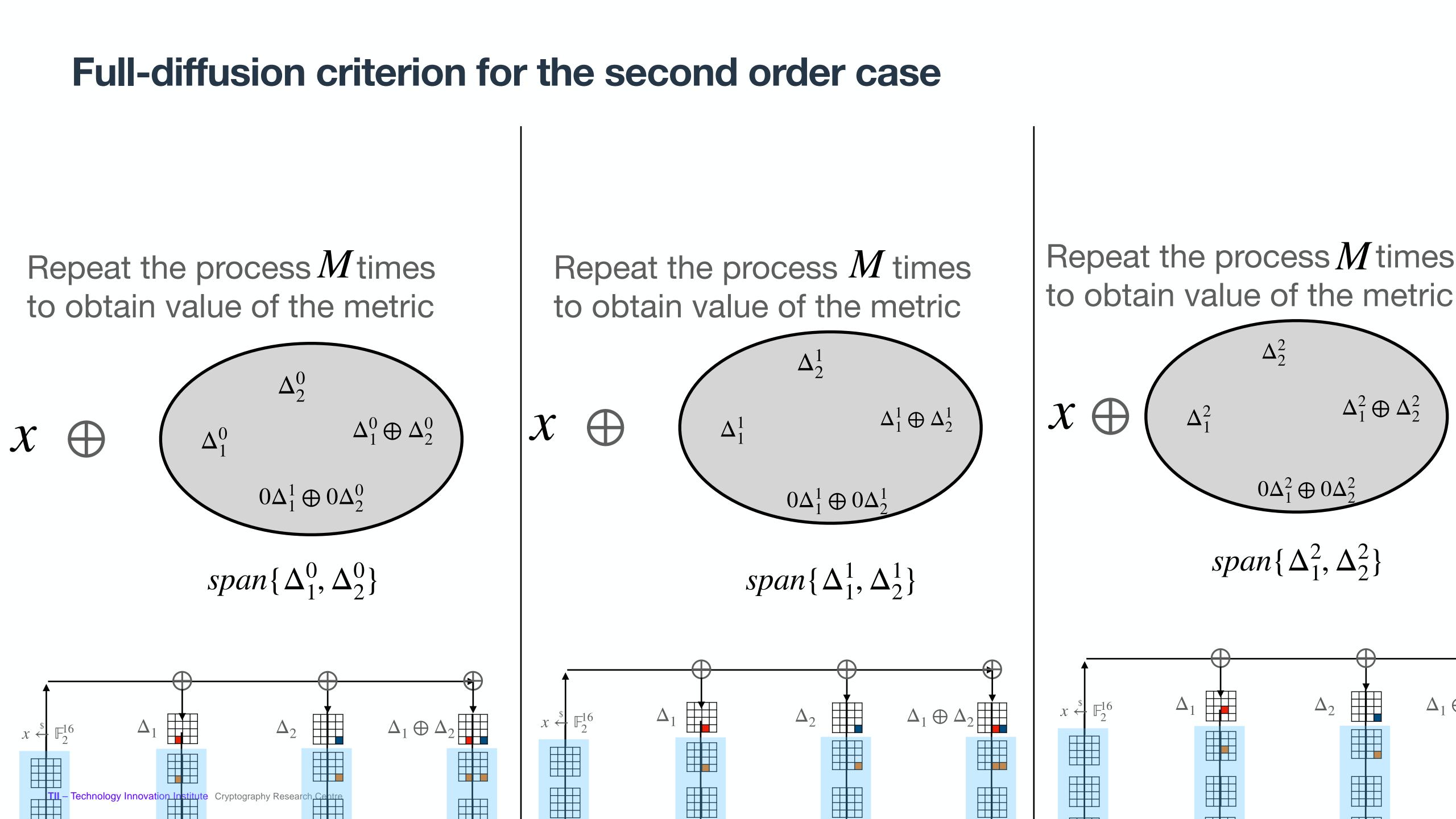






Full-diffusion criterion for the second order case We need $\binom{n}{d}$ vector spaces MM M Δ_2^2 Δ_2^1 Δ_2^0 $\mathcal{X} \oplus$ $\Delta^1_1 \oplus \Delta^1_2$ Δ_1^2 $\Delta_1^0 \oplus \Delta_2^0$ ${\mathcal X}$ \oplus Δ_1^1 Δ_1^0 $0\Delta_1^2 \oplus 0\Delta_2^2$ $0\Delta_1^1 \oplus 0\Delta_2^0$ $0\Delta_1^1 \oplus 0\Delta_2^1$ $span\{\Delta_1^2, \Delta_2^2\}$ span{ Δ_1^0, Δ_2^0 } $span\{\Delta_1^1, \Delta_2^1\}$ \square $\mathbf{\Theta}$ \square $x \stackrel{\$}{\leftarrow} \mathbb{F}_2^{16}$ Δ Δ_2 $\Delta_1 \oplus \Delta_2$ Δ_1 . Δ_2 \mathbb{F}_2^{16} $\Delta_1 \oplus \Delta_2$ $x \leftarrow$ Δ_2 Δ Cryptography Resear





Ascon Case 4-order metrics

Computation of High-order metrics

To compute the four-order derivate -> $span\{\Delta_1, \Delta_2, \Delta_3, \Delta_4\}$ How many vector spaces we have? $\binom{320}{4} \approx 2^{29} \approx 428$ millions How many vectors in each vector space? 2⁴

Number of cipher evaluations

$$2^4$$
 M

Challenges

- Determine the workload,
- Parallelize the computation of the metrics associated to each vector space
- Avoid CPU bottleneck,
- Manage inter-block GPU synchronization,
- Avoid inter-GPU communication during the processing of avalanche tests.

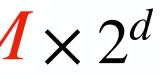
Distribute the main workload among threads, thread blocks, and the GPUs to compute the criteria,

TII – Technology Innovation Institute Cryptography Research Centre

Data-level parallelism

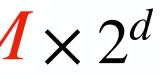
Data-level parallelism

The number of cipher evaluations is $\binom{n}{d} \times M \times 2^d$



Data-level parallelism

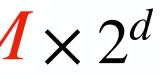
The number of cipher evaluations is $\binom{n}{d} \times M \times 2^d$



Data-level parallelism

The number of cipher evaluations is $\binom{n}{d} \times M \times 2^d$

Model-level parallelism



Data-level parallelism

The number of cipher evaluations is $\binom{n}{d} \times M \times 2^d$

Model-level parallelism

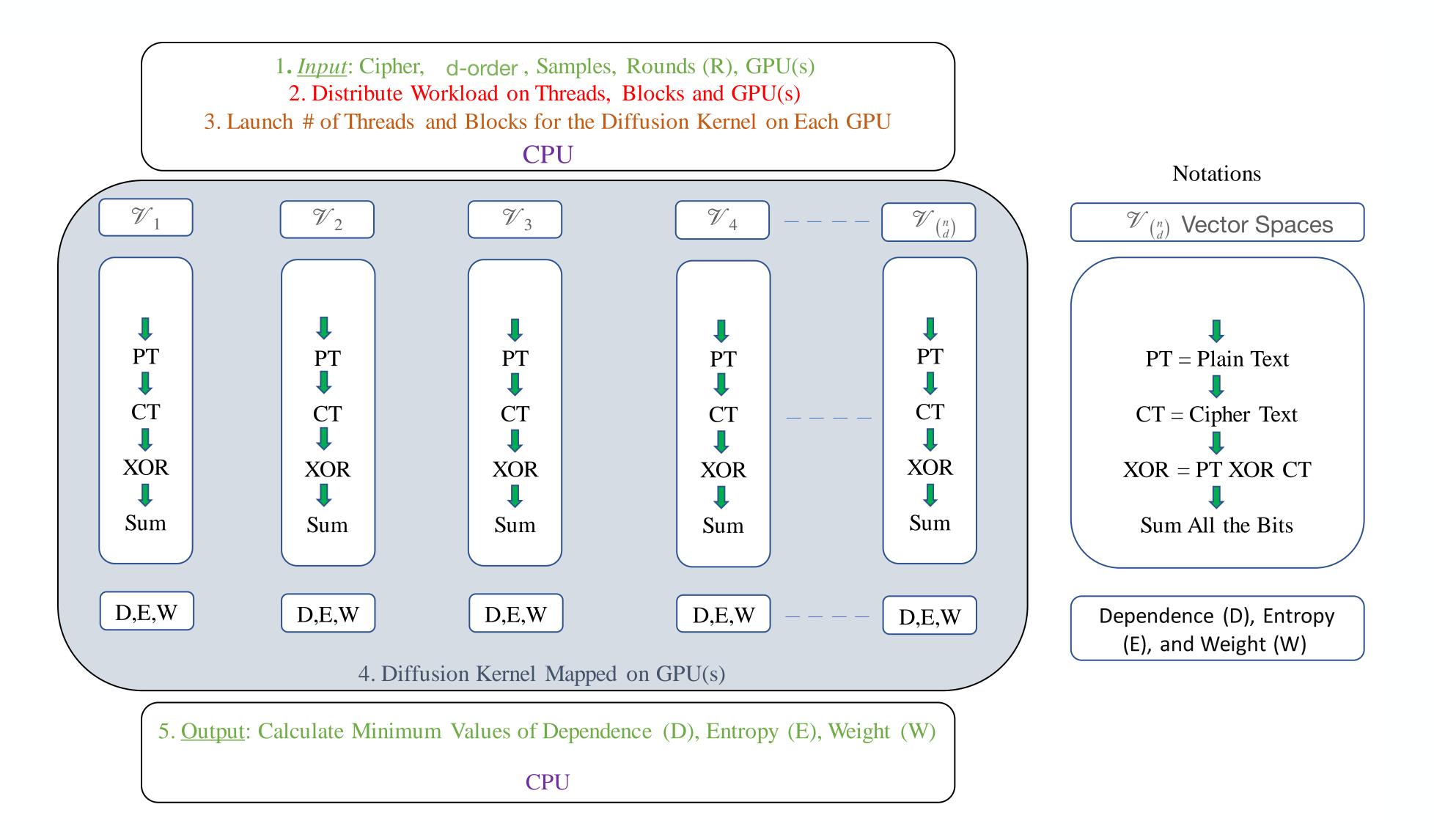
The number of cipher evaluations is $\binom{n}{d} \times M \times 2^d$

Model Level Parallelism Distribution

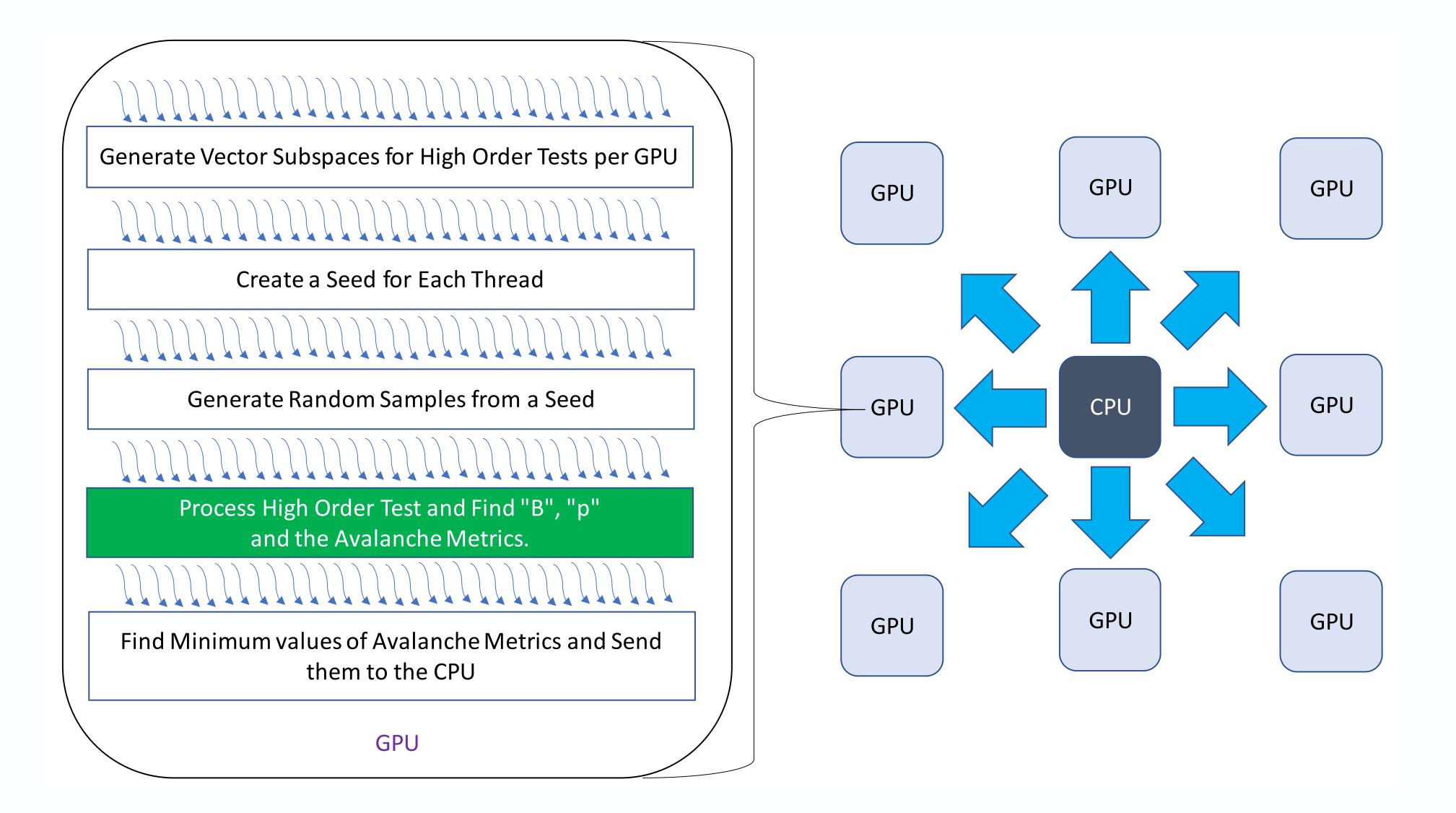
- A Main contribution is from the number of vector spaces, i.e. $\binom{n}{d}$
- Number of threads should correspond to the number of vector spaces, i.e. $\binom{n}{d}$
- If we have 32 blocks in each GPU, we need $\binom{n}{d}/8/32$ threads per block per GPU

If we have 8 GPUs, then for each GPU the number of threads a.k.a vector spaces will be $\binom{n}{d}/8$

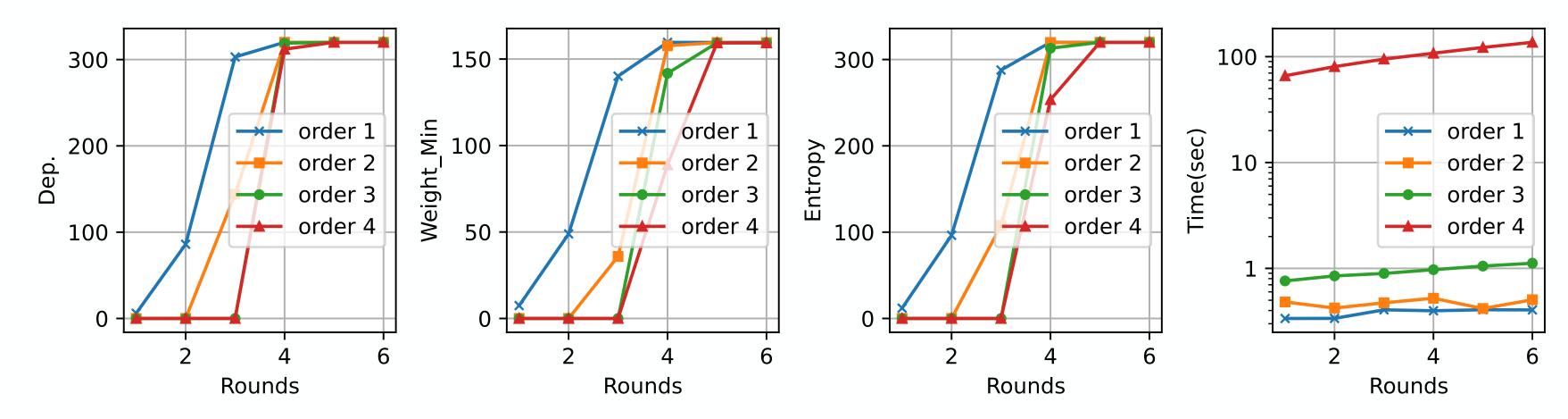
Model Level Parallelism

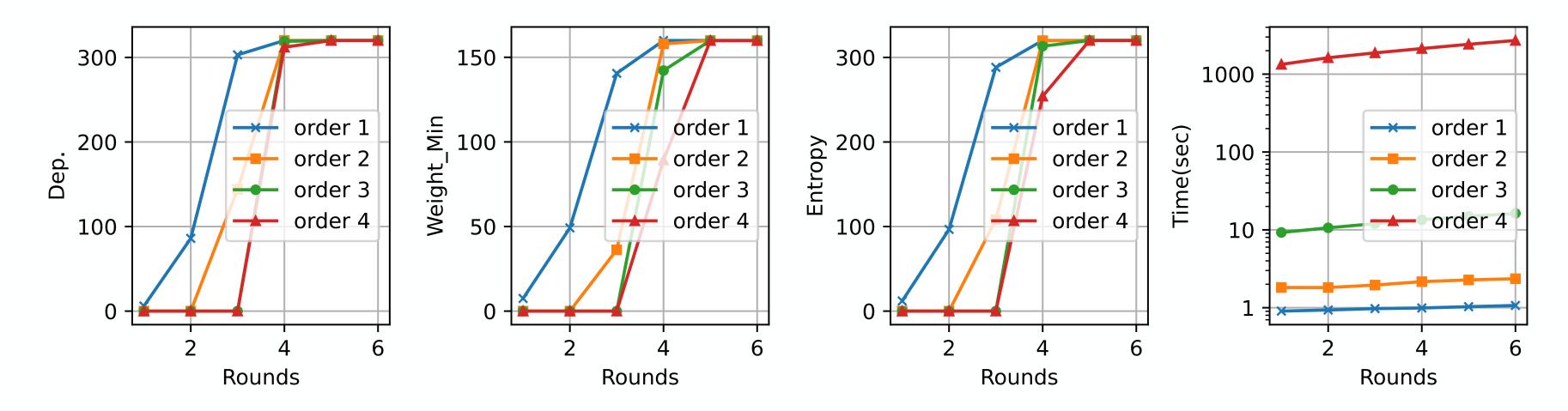


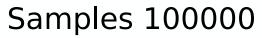
Workload in the GPU



Report on ASCON

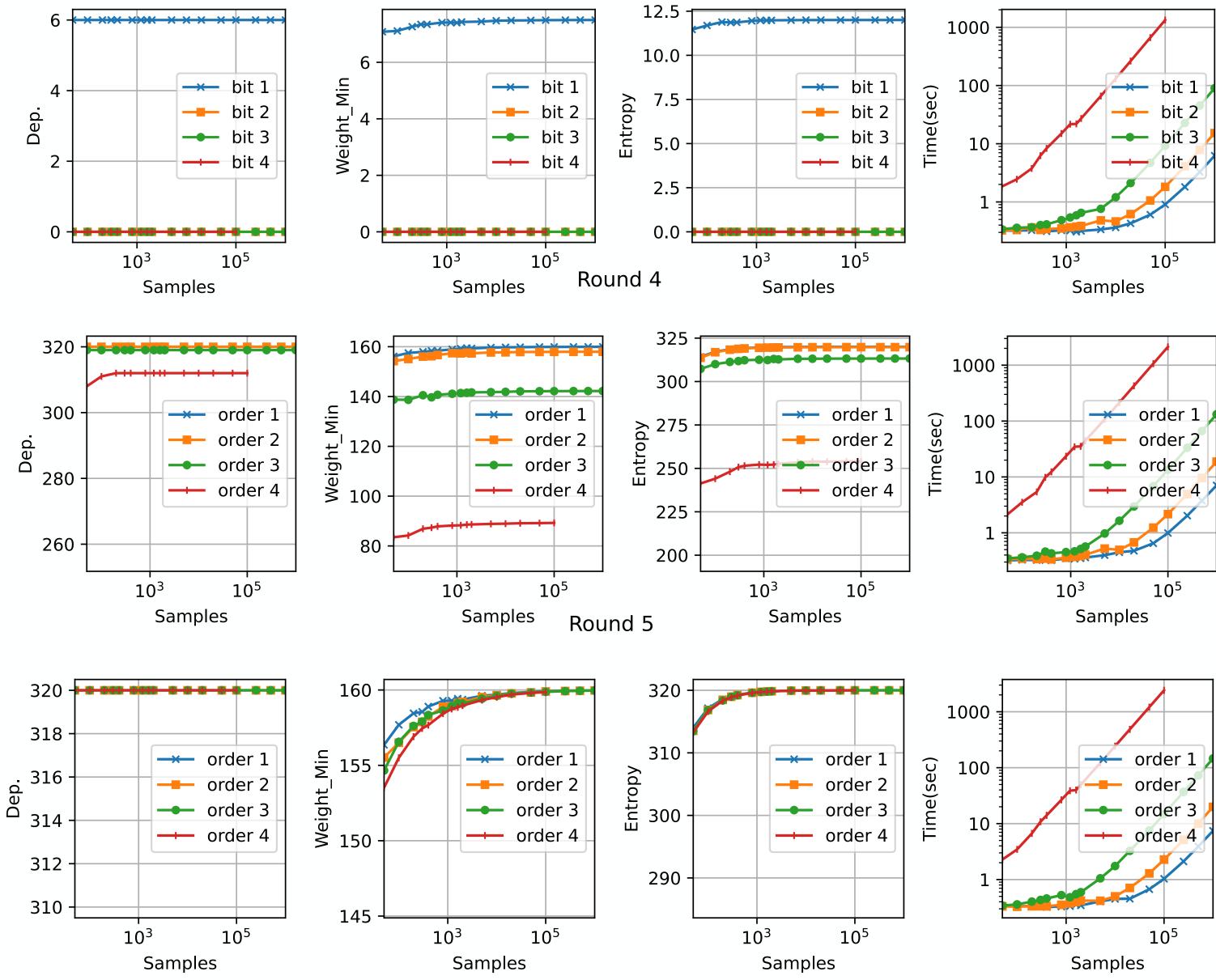






Round 1

Report on ASCON



Conclusion

We propose and evaluate high-order avalanche tests on multi-GPU platforms,

- Use in the evaluation of parameters in the design phase of symmetric ciphers.
- This framework is general and can be easily adapted to test other block ciphers and permutations on several GPU models,
- We provided a detailed analysis of the permutation of the ASCON
 - Verified all the Ascon distinguishers presented by [Rohit2021] in minutes, while for them, it took weeks.
- The main challenge of this test was the huge number of cipher evaluations that need to be performed, especially for order 4 tests.
- Manage inter-block GPU synchronization, avoid communication between GPU-CPU, etc.
- We leave for future work to optimize the code and reach even higher orders and to study how the newly found biases could be exploited as a base to mount new or improve existing attacks.

