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Motivation: delegation of computation aaS

Much work for the prover…

• Compute P1(x1), . . . ,P5(x5)

• Many proofs…

Idea: Prove everything at once!
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Motivation: delegation of computation aaS

Requirements:

1. “Heavy” part done once
2. Cheap individual proofs

4 More statements ⇒ cheaper prover
4 All verifiers check the same proof π∗
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Folding schemes

NP language L with corresponding relation R.

• Fold(x1,w1, x2,w2) → x,w, πFold

• FoldVrfy(x1, x2, x, πFold) → 0/1

Properties:

• Completeness: (x1,w1), (x2,w2) ∈ R ⇒ (x,w) ∈ R & πFold verifies
• Knowledge soundness: valid πFold & w ⇒ w1,w2.

Extends to m statements/witness pairs
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Folding schemes with selective verification

NP language L with corresponding relation R.

• Fold,FoldVrfy
• SelProve(x1, . . . , xm, x, πFold) → π1, . . . , πm

πi asserts that xi was included in aggregation
• SelVerify(x, i, xi, πi) → 0/1

Additional properties:

1. Selective completeness: honest proof πi verifies
2. Selective knowledge soundness: valid πi & w ⇒ wi

3. Efficiency: πi sublinear in m

Folding scheme ⇒ folding scheme with selective verification
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Properties

• Prover: O(m) aggregations
• Verifier: O(logm) verifications

Final statement

• Prove (e.g. NIZK)
• Aggregate
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Notation



Implicit notation for groups

• Let G be a group and P a fixed generator.
• [x] is the element xP.

Example:
[1], [a], [b], [ab] ∈ DDH

≡

P, aP, bP, abP ∈ DDH

With this notation:

[r] = ([r1], . . . , [rn]), x = (x1, . . . , xn) ,

[r]⊤x =
∑

[ri]xi (= x1r1P + · · ·+ xnrnP)
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Algebraic commitments

Generalization of Pedersen commitments

• keygen(1λ):
sample r ∈ Fn from some hard distribution
output [r]

• com([r], x):
output [c] = [r]⊤x

• verify([r], [c], x):
[c] ?

= [r]⊤x
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Folding VC through IP



Aggregation of vector commitment openings

Let’s fold VC openings!

• Statement: [ci] opens to xi1 , . . . , xik at positions i1, . . . , ik
• Witnees: opening x

1. reduce to IP: ([c], [d], z) : ∃a,b s.t z = a⊤b

2. (Simple) folding scheme for IP
3. Use bootstrapping
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Folding scheme for IP

Claim:

• Statement: ([c1], [d1], z1), ([c2], [d2], z2) ∈ IP,
• Witness (a1,b1) , (a2,b2).

P : a1, b1, a2, b2 V : [c1], [d1], z1, [c2], [d2], z2

z1,2 = a1
⊤b2

z2,1 = a2
⊤b1 z1,2, z2,1

x x← F

a = a1 + xa2 [c] = [c1] + x[c2]

b = b1 + x2b2 [d] = [d1] + x2[d2]

z = z1 + x · z2,1 + x2 · z1,2 + x3z2

4 Extemely fast: |witness| computations in F!
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VC opening

Proving m openings:

• One single NIZK for IP
• O(m) hash function1 computations (FS)
• O(m) inner-products in F (comparable to reading the statement)

Verification:

• O(logm) group operations
• O(logm) hash computations

1No recursion circuit involved!
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Applications

Folding schemes for:

• Inner product relations
• Polynomial commitment opening
• Relaxed R1CS [NOVA]

Folding much cheaper than NIZK proof!

Use cases:

• Aggregation of polynomial holographic proofs based SNARKs
• NOVA’s style aggregation
• …
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Future work

• Applications? (Public verifiability vs aaS...)

• Privacy?
• Statement Vector Commitments?
• Other relations PLONK/AIR style NOVA?
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