Folding Schemes with Selective Verification

<u>Carla Ràfols</u> Pompeu Fabra University Alexandros Zacharakis Toposware

October 2, 2023

This work was partially funded by a Protocol Labs Research Grant.

Motivation

Much work for the prover...

Much work for the prover...

- Compute P₁(x₁),..., P₅(x₅)
- Many proofs...

Much work for the prover...

- Compute P₁(x₁),..., P₅(x₅)
- Many proofs...

Idea: Prove everything at once!

Requirements:

- 1. "Heavy" part done once
- 2. Cheap individual proofs

Requirements:

- 1. "Heavy" part done once
- 2. Cheap individual proofs

- ✓ More statements \Rightarrow cheaper prover
- \checkmark All verifiers check the same proof π^*

NP language \mathcal{L} with corresponding relation \mathcal{R} .

NP language $\mathcal L$ with corresponding relation $\mathcal R.$

- $\operatorname{Fold}(x_1, w_1, x_2, w_2) \rightarrow x, w, \pi_{\operatorname{Fold}}$
- FoldVrfy $(x_1, x_2, x, \pi_{\text{Fold}}) \rightarrow 0/1$
NP language $\mathcal L$ with corresponding relation $\mathcal R.$

- $\operatorname{Fold}(x_1, w_1, x_2, w_2) \rightarrow x, w, \pi_{\operatorname{Fold}}$
- FoldVrfy $(x_1, x_2, x, \pi_{\text{Fold}}) \rightarrow 0/1$

Properties:

- Completeness: $(x_1, w_1), (x_2, w_2) \in \mathcal{R} \Rightarrow (x, w) \in \mathcal{R} \& \pi_{\mathsf{Fold}}$ verifies
- Knowledge soundness: valid $\pi_{\text{Fold}} \& w \Rightarrow w_1, w_2$.

NP language \mathcal{L} with corresponding relation \mathcal{R} .

- $\operatorname{Fold}(x_1, w_1, x_2, w_2) \rightarrow x, w, \pi_{\operatorname{Fold}}$
- FoldVrfy $(x_1, x_2, x, \pi_{\text{Fold}}) \rightarrow 0/1$

Properties:

- Completeness: $(x_1, w_1), (x_2, w_2) \in \mathcal{R} \Rightarrow (x, w) \in \mathcal{R} \& \pi_{\mathsf{Fold}}$ verifies
- Knowledge soundness: valid $\pi_{\text{Fold}} \& w \Rightarrow w_1, w_2$.

Extends to *m* statements/witness pairs

Folding schemes with selective verification

NP language \mathcal{L} with corresponding relation \mathcal{R} .

NP language $\mathcal L$ with corresponding relation $\mathcal R.$

- Fold, FoldVrfy
- SelProve $(x_1, \ldots, x_m, x, \pi_{\text{Fold}}) \rightarrow \pi_1, \ldots, \pi_m$ π_i asserts that x_i was included in aggregation
- SelVerify $(x, i, x_i, \pi_i) \rightarrow 0/1$

NP language $\mathcal L$ with corresponding relation $\mathcal R.$

- Fold, FoldVrfy
- SelProve $(x_1, \ldots, x_m, x, \pi_{\mathsf{Fold}}) \to \pi_1, \ldots, \pi_m$

 π_i asserts that x_i was included in aggregation

• SelVerify $(x, i, x_i, \pi_i) \rightarrow 0/1$

Additional properties:

- 1. Selective completeness: honest proof π_i verifies
- 2. Selective knowledge soundness: valid $\pi_i \& w \Rightarrow w_i$
- 3. **Efficiency**: π_i sublinear in *m*

NP language \mathcal{L} with corresponding relation \mathcal{R} .

- Fold, FoldVrfy
- SelProve $(x_1, \ldots, x_m, x, \pi_{\mathsf{Fold}}) \to \pi_1, \ldots, \pi_m$

 π_i asserts that x_i was included in aggregation

• SelVerify $(x, i, x_i, \pi_i) \rightarrow 0/1$

Additional properties:

- 1. Selective completeness: honest proof π_i verifies
- 2. Selective knowledge soundness: valid $\pi_i \& w \Rightarrow w_i$
- 3. **Efficiency**: π_i sublinear in *m*

Folding scheme \Rightarrow folding scheme with selective verification

Statement aggregation tree

Statement aggregation tree

Statement aggregation tree

Give as *proof* the sibling statements & 2-folding proofs

- Prover: $\mathcal{O}(m)$ aggregations
- Verifier: $\mathcal{O}(\log m)$ verifications

Final statement

- Prove (e.g. NIZK)
- Aggregate

Notation

- Let $\mathbb G$ be a group and $\mathcal P$ a fixed generator.
- [x] is the element $x\mathcal{P}$.

Implicit notation for groups

- Let $\mathbb G$ be a group and $\mathcal P$ a fixed generator.
- [x] is the element $x\mathcal{P}$.

Example:

 $[1], [a], [b], [ab] \in \mathsf{DDH}$

 \equiv

 $\mathcal{P}, \textit{a}\mathcal{P}, \textit{b}\mathcal{P}, \textit{a}\textit{b}\mathcal{P} \in \mathsf{DDH}$

Implicit notation for groups

- Let $\mathbb G$ be a group and $\mathcal P$ a fixed generator.
- [x] is the element $x\mathcal{P}$.

Example:

 $[1], [a], [b], [ab] \in \mathsf{DDH}$ \equiv

 $\mathcal{P}, a\mathcal{P}, b\mathcal{P}, ab\mathcal{P} \in \mathsf{DDH}$

With this notation:

$$[\mathbf{r}] = ([r_1], \dots, [r_n]), \qquad \mathbf{x} = (x_1, \dots, x_n),$$
$$[\mathbf{r}]^\top \mathbf{x} = \sum [r_i] x_i \quad (= x_1 r_1 \mathcal{P} + \dots + x_n r_n \mathcal{P})$$

Generalization of Pedersen commitments

• keygen (1^{λ}) :

sample $\mathbf{r} \in \mathbb{F}^n$ from some hard distribution output $[\mathbf{r}]$

- $\operatorname{com}([\mathbf{r}], \mathbf{x})$: output $[c] = [\mathbf{r}]^\top \mathbf{x}$
- verify($[\mathbf{r}], [c], \mathbf{x}$): $[c] \stackrel{?}{=} [\mathbf{r}]^{\top} \mathbf{x}$

Folding VC through IP

- Statement: [c_i] opens to x_{i1},..., x_{ik} at positions i₁,..., i_k
- Witnees: opening x

- Statement: [c_i] opens to x_{i1},..., x_{ik} at positions i₁,..., i_k
- Witnees: opening x

1. reduce to IP: ([c], [d], z) : $\exists \mathbf{a}, \mathbf{b}$ s.t $z = \mathbf{a}^\top \mathbf{b}$

- Statement: [c_i] opens to x_{i1},..., x_{ik} at positions i₁,..., i_k
- Witnees: opening x
- 1. reduce to IP: $([c], [d], z) : \exists \mathbf{a}, \mathbf{b} \text{ s.t } z = \mathbf{a}^\top \mathbf{b}$

x_1	x_2	x_3	x_4	x_5
-------	-------	-------	-------	-------

- Statement: [c_i] opens to x_{i1},..., x_{ik} at positions i₁,..., i_k
- Witnees: opening x
- 1. reduce to IP: $([c], [d], z) : \exists \mathbf{a}, \mathbf{b} \text{ s.t } z = \mathbf{a}^\top \mathbf{b}$

x_1	x_2	x_3	x_4	x_5
-------	-------	-------	-------	-------

0	0	y_3	y_4	0
---	---	-------	-------	---

- Statement: [c_i] opens to x_{i1},..., x_{ik} at positions i₁,..., i_k
- Witnees: opening x
- 1. reduce to IP: ([c], [d], z) : $\exists \mathbf{a}, \mathbf{b}$ s.t $z = \mathbf{a}^\top \mathbf{b}$

- Statement: [c_i] opens to x_{i1},..., x_{ik} at positions i₁,..., i_k
- Witnees: opening x
- 1. reduce to IP: ([c], [d], z) : $\exists \mathbf{a}, \mathbf{b}$ s.t $z = \mathbf{a}^\top \mathbf{b}$

2. (Simple) folding scheme for IP

- Statement: [c_i] opens to x_{i1},..., x_{ik} at positions i₁,..., i_k
- Witnees: opening x
- 1. reduce to IP: ([c], [d], z) : $\exists \mathbf{a}, \mathbf{b}$ s.t $z = \mathbf{a}^\top \mathbf{b}$

- 2. (Simple) folding scheme for IP
- 3. Use bootstrapping

Folding scheme for IP

Claim:

- Statement: $([c_1], [d_1], z_1)$, $([c_2], [d_2], z_2) \in \mathsf{IP}$,
- Witness (**a**₁, **b**₁), (**a**₂, **b**₂).

Folding scheme for IP

Claim:

- Statement: $([c_1], [d_1], z_1)$, $([c_2], [d_2], z_2) \in \mathsf{IP}$,
- Witness (**a**₁, **b**₁), (**a**₂, **b**₂).

$\mathcal{P}: \ \mathbf{a}_1, \mathbf{b}_1, \mathbf{a}_2, \mathbf{b}_2$		$\mathcal{V}: [c_1], [d_1], z_1, [c_2], [d_2], z_2$
$\mathbf{z}_{1,2} = \mathbf{a}_1^{T} \mathbf{b}_2$		
$\mathbf{z}_{2,1} = \mathbf{a}_2^{\top} \mathbf{b}_1$	$\xrightarrow{Z_{1,2}, Z_{2,1}}$	
	<i>x</i>	$x \leftarrow \mathbb{F}$
$a = a_1 + x a_2$		$[c] = [c_1] + x[c_2]$
$\mathbf{b} = \mathbf{b}_1 + x^2 \mathbf{b}_2$		$[d] = [d_1] + x^2[d_2]$
		$z = z_1 + x \cdot z_{2,1} + x^2 \cdot z_{1,2} + x^3 z_2$

Folding scheme for IP

Claim:

- Statement: $([c_1], [d_1], z_1)$, $([c_2], [d_2], z_2) \in \mathsf{IP}$,
- Witness (a₁, b₁), (a₂, b₂).

✓ Extemely fast: |witness| computations in 𝔽!

Proving *m* openings:

- One single NIZK for IP
- \$\mathcal{O}(m)\$ hash function¹ computations (FS)
- $\mathcal{O}(m)$ inner-products in \mathbb{F} (comparable to reading the statement)

¹No recursion circuit involved!

Proving *m* openings:

- One single NIZK for IP
- $\mathcal{O}(m)$ hash function¹ computations (FS)
- $\mathcal{O}(m)$ inner-products in \mathbb{F} (comparable to reading the statement)

Verification:

- $O(\log m)$ group operations
- $O(\log m)$ hash computations

¹No recursion circuit involved!

Folding schemes for:

- Inner product relations
- Polynomial commitment opening
- Relaxed R1CS [NOVA]

Folding schemes for:

- Inner product relations
- Polynomial commitment opening
- Relaxed R1CS [NOVA]

Folding much cheaper than NIZK proof!

Folding schemes for:

- Inner product relations
- Polynomial commitment opening
- Relaxed R1CS [NOVA]

Folding much cheaper than NIZK proof!

Use cases:

- Aggregation of polynomial holographic proofs based SNARKs
- NOVA's style aggregation

• ...

• Applications? (Public verifiability vs aaS...)

- Applications? (Public verifiability vs aaS...)
- Privacy?

- Applications? (Public verifiability vs aaS...)
- Privacy?
- Statement Vector Commitments?

- Applications? (Public verifiability vs aaS...)
- Privacy?
- Statement Vector Commitments?
- Other relations PLONK/AIR style NOVA?

