Folding Schemes with Selective Verification

Carla Rafols
Pompeu Fabra University

October 2, 2023

This work was partially funded by a Protocol Labs Research Grant.

Alexandros Zacharakis
Toposware

Motivation

Motivation: delegation of computation aaS

Motivation: delegation of computation aaS

T

/: (Q) :‘ ': ;

Motivation: delegation of computation aaS
A k»

Motivation: delegation of computation aaS

T2

/: (Q) :‘ ': ;

Motivation: delegation of computation aaS
+\ k}«' f
/'

Motivation: delegation of computation aaS

Q0 9 O

Motivation: delegation of computation aaS

Py(x3)
T3

Motivation: delegation of computation aaS

Ty

/: (Q) :‘ ': ;

Motivation: delegation of computation aaS
+\ k}«' f
/'

Motivation: delegation of computation aaS

L5

Motivation: delegation of computation aaS
+\ k}«' f
/'

Motivation: delegation of computation aaS

Much work for the prover...

Motivation: delegation of computation aaS

Much work for the prover...

= Compute Pl(Xl), ceey 'D5(X5)
= Many proofs...

Motivation: delegation of computation aaS

Much work for the prover...

= Compute Pl(Xl), ceey 'D5(X5)
= Many proofs...

Idea: Prove everything at once!

Motivation: delegation of computation aaS
+\ k}«' f
/'

Motivation: delegation of computation aaS
+\ k}«' f
/'

T

Motivation: delegation of computation aaS
+\ k}«' f
/'

Motivation: delegation of computation aaS
+\ k}«' f
/'

T2

Motivation: delegation of computation aaS
+\ k}«' f
/'

Motivation: delegation of computation aaS

Motivation: delegation of computation aaS

Ps(x3)

Motivation: delegation of computation aaS
+\ k}«' f
/'

T

Motivation: delegation of computation aaS
+\ k}«' f
/'

Py(xy)

Ty

Motivation: delegation of computation aaS
+\ k}«' f
/'

L5

Motivation: delegation of computation aaS
+\ k}«' f
/'

L

Motivation: delegation of computation aaS
+\ k}«' f
/'

Motivation: delegation of computation aaS

'%\E" [

| WILL MAKE ONE FROOF
TO RULE THEM ALL!

Motivation: delegation of computation aaS

1 WILL MAKE OME FROOF
TO RULE THEM ALL!

'%\E" [

Motivation: delegation of computation aaS
+\ k}«' f []
/'
Y

TO RULE THEM ALL!

Motivation: delegation of computation aaS
+\ k}«' f
/'

st Ty

Motivation: delegation of computation aaS

Requirements:

1. "Heavy" part done once

2. Cheap individual proofs

Motivation: delegation of computation aaS

Requirements:

1. "Heavy" part done once

2. Cheap individual proofs

v/ More statements = cheaper prover

v All verifiers check the same proof 7*

Folding schemes

NP language £ with corresponding relation R.

Folding schemes

NP language £ with corresponding relation R.

= Fold(xy, wi, xo, wa) — X, W, TTFold

= FoldVrfy(xi, x2, X, TFola) — 0/1

Folding schemes

NP language £ with corresponding relation R.

= Fold(xy, wi, xo, wa) — X, W, TTFold

= FoldVrfy(xi, x2, X, TFola) — 0/1

Properties:

= Completeness: (xi, w1), (x2, w2) € R = (x,w) € R & 7roiq verifies

= Knowledge soundness: valid 7o & w = wy, ws.

Folding schemes

NP language £ with corresponding relation R.

= Fold(xy, wi, xo, wa) — X, W, TTFold

= FoldVrfy(xi, x2, X, TFola) — 0/1

Properties:

= Completeness: (xi, w1), (x2, w2) € R = (x,w) € R & 7roiq verifies

= Knowledge soundness: valid 7o & w = wy, ws.

Extends to m statements/witness pairs

Folding schemes with selective verification

NP language £ with corresponding relation R.

Folding schemes with selective verification

NP language £ with corresponding relation R.

= Fold, FoldVrfy
n SelProve(xq, ..., Xm, X, TEold) —> M1y -« Tm
m; asserts that x; was included in aggregation

= SelVerify(x, i, x;, 7)) — 0/1

Folding schemes with selective verification

NP language £ with corresponding relation R.

= Fold, FoldVrfy
n SelProve(xq, ..., Xm, X, TEold) —> M1y -« Tm
m; asserts that x; was included in aggregation

= SelVerify(x, i, x;, 7)) — 0/1

Additional properties:

1. Selective completeness: honest proof 7; verifies
2. Selective knowledge soundness: valid 7; & w = w;

3. Efficiency: 7; sublinear in m

Folding schemes with selective verification

NP language £ with corresponding relation R.

= Fold, FoldVrfy
n SelProve(xq, ..., Xm, X, TEold) —> M1y -« Tm
m; asserts that x; was included in aggregation

= SelVerify(x, i, x;, 7)) — 0/1

Additional properties:

1. Selective completeness: honest proof 7; verifies
2. Selective knowledge soundness: valid 7; & w = w;

3. Efficiency: 7; sublinear in m

Folding scheme = folding scheme with selective verification

Statement aggregation tree

Fold

//\\ //\\

Fold Fold

/\ /\ /\ /\
A A AN

{9 Fold x4 X Fold ¥ X Fold ¥

Statement aggregation tree

//\\ //\\

Fold Fold

/\ /\ /\ /\
A AN

X9 Fold {9 X, Fold x XY | Fold Xk

Statement aggregation tree

1

Fold

X Fold

X9 Fold x

Fe)

Give as proof the sibling statements & 2-folding proofs

= Prover: O(m) aggregations

= Verifier: O(log m) verifications

Final statement

= Prove (e.g. NIZK)
= Aggregate

Notation

Implicit notation for groups

= Let G be a group and P a fixed generator.

= [x] is the element xP.

Implicit notation for groups

= Let G be a group and P a fixed generator.

= [x] is the element xP.

Example:
[1], [a], [b], [ab] € DDH

P,aP,bP,abP € DDH

Implicit notation for groups

= Let G be a group and P a fixed generator.

= [x] is the element xP.

Example:
[1], [a], [b], [ab] € DDH

P,aP,bP,abP € DDH

With this notation:

[r] = ([n],-- -, [r]), X =(X1,...,Xn),

[I‘]TX = Z[r,-]x,- (: xxnP+--+ annp)

Algebraic commitments

Generalization of Pedersen commitments

= keygen(1*):
sample r € F” from some hard distribution
output [r]

= com([r], x):

output [c] = [r] "x

= verify([r], [, x):

CEAGKE

10

Folding VC through IP

Aggregation of vector commitment openings

Let’s fold VC openings!

= Statement: [¢]] opens to X, ..., X; at positions ii,..., ik

= Witnees: opening x

11

Aggregation of vector commitment openings

Let’s fold VC openings!

= Statement: [¢]] opens to X, ..., X; at positions ii,..., ik

= Witnees: opening x

1. reduce to IP: ([c],[d],z) : Ja,bstz=a'b

11

Aggregation of vector commitment openings

Let’s fold VC openings!

= Statement: [¢]] opens to X, ..., X; at positions ii,..., ik

= Witnees: opening x

1. reduce to IP: ([d,[d],2z) : Ja,bstz=a'b

BB ENES

HERNE

11

Aggregation of vector commitment openings

Let’s fold VC openings!

= Statement: [¢]] opens to X, ..., X; at positions ii,..., ik

= Witnees: opening x

1. reduce to IP: ([d,[d],2z) : Ja,bstz=a'b

BB ENES

’0 |0 |y3|y4|0\

11

Aggregation of vector commitment openings

Let’s fold VC openings!

= Statement: [¢]] opens to X, ..., X; at positions ii,..., ik

= Witnees: opening x

1. reduce to IP: ([d,[d],2z) : 3a,bstz=a"b

’x1|x2| x3| $4|$5\

x'y =a3ys + Tays = 2

SRR

11

Aggregation of vector commitment openings

Let’s fold VC openings!

= Statement: [¢]] opens to X, ..., X; at positions ii,..., ik

= Witnees: opening x

1. reduce to IP: ([d,[d],2z) : 3a,bstz=a"b
P - e
x'y = a3y; + T4ys = 2
oo
2. (Simple) folding scheme for IP

11

Aggregation of vector commitment openings

Let’s fold VC openings!

= Statement: [¢]] opens to X, ..., X; at positions ii,..., ik

= Witnees: opening x

1. reduce to IP: ([d,[d],2z) : 3a,bstz=a"b
P - e
x'y = a3y; + T4ys = 2
oo
2. (Simple) folding scheme for IP

3. Use bootstrapping

11

Folding scheme for IP

Claim:

= Statement: ([c1],[ch1], z1), ([e2], [d2], z2) € IP,
= Witness (aj, b;), (a2, ba).

12

Folding scheme for IP

Claim:

= Statement: ([a1], [d1], z1), ([c2], [do], 22) € IP,
= Witness (aj, b;), (a2, ba).

P : ai,bi,ax, b V: [al,[di], z1, [c2], [d2], 22

-
z12=a; by

21 = ax ' by 71,2, 22,1
—_—
X x+TF
-
a=a; + xaz [d] = [a] + x[c]
b =b; +x2b2 [d] = [dh] +X2[d2]

2 3
Z=z21+ X221 +X 2120+ X2

12

Folding scheme for IP

Claim:

= Statement: ([a1], [d1], z1), ([c2], [do], 22) € IP,
= Witness (aj, b;), (a2, ba).

P : a1, by, az, by V: [al,[di], z1, [e], [d2], 22

=
z1p=a; b

21 = ax ' by 71,2, 22,1
—_—
X x+TF
-
a=a; + xaz [d = [a] + x[c]
b =b; +x2b2 [d] = [dh] +X2[d2]

2 3
z=z1t+tXx221+X -z120+ X 2

v Extemely fast: |witness| computations in F! 12

VC opening

Proving m openings:

= One single NIZK for IP
= (O(m) hash function! computations (FS)

= O(m) inner-products in F (comparable to reading the statement)

INo recursion circuit involved!

13

VC opening

Proving m openings:

= One single NIZK for IP
= (O(m) hash function! computations (FS)

= O(m) inner-products in F (comparable to reading the statement)
Verification:

= O(log m) group operations

= O(log m) hash computations

INo recursion circuit involved!

13

Applications

Folding schemes for:

= |nner product relations
= Polynomial commitment opening

= Relaxed R1CS [NOVA]

14

Applications

Folding schemes for:

= |nner product relations
= Polynomial commitment opening

= Relaxed R1CS [NOVA]

Folding much cheaper than NIZK proof!

14

Applications

Folding schemes for:

= |nner product relations
= Polynomial commitment opening

= Relaxed R1CS [NOVA]

Folding much cheaper than NIZK proof!

Use cases:

= Aggregation of polynomial holographic proofs based SNARKs
= NOVA's style aggregation

14

= Applications? (Public verifiability vs aaS...)

15

= Applications? (Public verifiability vs aaS...)

= Privacy?

15

= Applications? (Public verifiability vs aaS...)
= Privacy?

= Statement Vector Commitments?

15

= Applications? (Public verifiability vs aaS...)
= Privacy?

= Statement Vector Commitments?

= Other relations PLONK/AIR style NOVA?

15

	Motivation
	Notation
	Folding VC through IP

