Folding Schemes with Selective Verification

Carla Ràfols
Pompeu Fabra University

Alexandros Zacharakis
Toposware

October 2, 2023

This work was partially funded by a Protocol Labs Research Grant.

Motivation

Motivation: delegation of computation aaS

Motivation: delegation of computation aaS

Much work for the prover...

Motivation: delegation of computation aaS

Much work for the prover...

- Compute $P_{1}\left(x_{1}\right), \ldots, P_{5}\left(x_{5}\right)$
- Many proofs...

Motivation: delegation of computation aaS

Much work for the prover...

- Compute $P_{1}\left(x_{1}\right), \ldots, P_{5}\left(x_{5}\right)$
- Many proofs...

Idea: Prove everything at once!

Motivation: delegation of computation aaS

Motivation: delegation of computation aaS

Requirements:

1. "Heavy" part done once
2. Cheap individual proofs

Motivation: delegation of computation aaS

Requirements:

1. "Heavy" part done once
2. Cheap individual proofs
\checkmark More statements \Rightarrow cheaper prover
\checkmark All verifiers check the same proof π^{*}

Folding schemes

NP language \mathcal{L} with corresponding relation \mathcal{R}.

Folding schemes

NP language \mathcal{L} with corresponding relation \mathcal{R}.

- Fold $\left(x_{1}, w_{1}, x_{2}, w_{2}\right) \rightarrow x, w, \pi_{\text {Fold }}$
- FoldVrfy $\left(x_{1}, x_{2}, x, \pi_{\text {Fold }}\right) \rightarrow 0 / 1$

Folding schemes

NP language \mathcal{L} with corresponding relation \mathcal{R}.

- Fold $\left(x_{1}, w_{1}, x_{2}, w_{2}\right) \rightarrow x, w, \pi_{\text {Fold }}$
- FoldVrfy $\left(x_{1}, x_{2}, x, \pi_{\text {Fold }}\right) \rightarrow 0 / 1$

Properties:

- Completeness: $\left(x_{1}, w_{1}\right),\left(x_{2}, w_{2}\right) \in \mathcal{R} \Rightarrow(x, w) \in \mathcal{R} \& \pi_{\text {Fold }}$ verifies
- Knowledge soundness: valid $\pi_{\text {Fold }} \& w \Rightarrow w_{1}, w_{2}$.

Folding schemes

NP language \mathcal{L} with corresponding relation \mathcal{R}.

- Fold $\left(x_{1}, w_{1}, x_{2}, w_{2}\right) \rightarrow x, w, \pi_{\text {Fold }}$
- FoldVrfy $\left(x_{1}, x_{2}, x, \pi_{\text {Fold }}\right) \rightarrow 0 / 1$

Properties:

- Completeness: $\left(x_{1}, w_{1}\right),\left(x_{2}, w_{2}\right) \in \mathcal{R} \Rightarrow(x, w) \in \mathcal{R} \& \pi_{\text {Fold }}$ verifies
- Knowledge soundness: valid $\pi_{\text {Fold }} \& w \Rightarrow w_{1}, w_{2}$.

Extends to m statements/witness pairs

Folding schemes with selective verification

NP language \mathcal{L} with corresponding relation \mathcal{R}.

Folding schemes with selective verification

NP language \mathcal{L} with corresponding relation \mathcal{R}.

- Fold, FoldVrfy
- SelProve $\left(x_{1}, \ldots, x_{m}, x, \pi_{\text {Fold }}\right) \rightarrow \pi_{1}, \ldots, \pi_{m}$
π_{i} asserts that x_{i} was included in aggregation
- SelVerify $\left(x, i, x_{i}, \pi_{i}\right) \rightarrow 0 / 1$

Folding schemes with selective verification

NP language \mathcal{L} with corresponding relation \mathcal{R}.

- Fold, FoldVrfy
- SelProve $\left(x_{1}, \ldots, x_{m}, x, \pi_{\text {Fold }}\right) \rightarrow \pi_{1}, \ldots, \pi_{m}$
π_{i} asserts that x_{i} was included in aggregation
- SelVerify $\left(x, i, x_{i}, \pi_{i}\right) \rightarrow 0 / 1$

Additional properties:

1. Selective completeness: honest proof π_{i} verifies
2. Selective knowledge soundness: valid $\pi_{i} \& w \Rightarrow w_{i}$
3. Efficiency: π_{i} sublinear in m

Folding schemes with selective verification

NP language \mathcal{L} with corresponding relation \mathcal{R}.

- Fold, FoldVrfy
- SelProve $\left(x_{1}, \ldots, x_{m}, x, \pi_{\text {Fold }}\right) \rightarrow \pi_{1}, \ldots, \pi_{m}$
π_{i} asserts that x_{i} was included in aggregation
- SelVerify $\left(x, i, x_{i}, \pi_{i}\right) \rightarrow 0 / 1$

Additional properties:

1. Selective completeness: honest proof π_{i} verifies
2. Selective knowledge soundness: valid $\pi_{i} \& w \Rightarrow w_{i}$
3. Efficiency: π_{i} sublinear in m

Folding scheme \Rightarrow folding scheme with selective verification

Statement aggregation tree

Statement aggregation tree

Statement aggregation tree

Give as proof the sibling statements \& 2-folding proofs

Properties

- Prover: $\mathcal{O}(m)$ aggregations
- Verifier: $\mathcal{O}(\log m)$ verifications

Final statement

- Prove (e.g. NIZK)
- Aggregate

Notation

Implicit notation for groups

- Let \mathbb{G} be a group and \mathcal{P} a fixed generator.
- $[x]$ is the element $x \mathcal{P}$.

Implicit notation for groups

- Let \mathbb{G} be a group and \mathcal{P} a fixed generator.
- $[x]$ is the element $x \mathcal{P}$.

Example:

$$
\begin{gathered}
{[1],[a],[b],[a b] \in \mathrm{DDH}} \\
\equiv \\
\mathcal{P}, a \mathcal{P}, b \mathcal{P}, a b \mathcal{P} \in \mathrm{DDH}
\end{gathered}
$$

Implicit notation for groups

- Let \mathbb{G} be a group and \mathcal{P} a fixed generator.
- $[x]$ is the element $x \mathcal{P}$.

Example:

$$
\begin{gathered}
{[1],[a],[b],[a b] \in \mathrm{DDH}} \\
\equiv \\
\mathcal{P}, a \mathcal{P}, b \mathcal{P}, a b \mathcal{P} \in \mathrm{DDH}
\end{gathered}
$$

With this notation:

$$
\begin{aligned}
& {[\mathbf{r}]=\left(\left[r_{1}\right], \ldots,\left[r_{n}\right]\right), \quad \mathbf{x}=\left(x_{1}, \ldots, x_{n}\right),} \\
& {[\mathbf{r}]^{\top} \mathbf{x}=\sum\left[r_{i}\right] x_{i} \quad\left(=x_{1} r_{1} \mathcal{P}+\cdots+x_{n} r_{n} \mathcal{P}\right)}
\end{aligned}
$$

Algebraic commitments

Generalization of Pedersen commitments

- keygen $\left(1^{\lambda}\right)$:

> sample $\mathbf{r} \in \mathbb{F}^{n}$ from some hard distribution output $[\mathbf{r}]$

- $\operatorname{com}([r], \mathbf{x})$:

$$
\text { output }[c]=[r]^{\top} \mathbf{x}
$$

- verify $([\mathbf{r}],[c], \mathbf{x})$:

$$
[c] \stackrel{?}{=}[\mathbf{r}]^{\top} \mathbf{x}
$$

Folding VC through IP

Aggregation of vector commitment openings

Let's fold VC openings!

- Statement: $\left[c_{i}\right]$ opens to $x_{i_{1}}, \ldots, x_{i_{k}}$ at positions i_{1}, \ldots, i_{k}
- Witnees: opening x

Aggregation of vector commitment openings

Let's fold VC openings!

- Statement: $\left[c_{i}\right]$ opens to $x_{i_{1}}, \ldots, x_{i_{k}}$ at positions i_{1}, \ldots, i_{k}
- Witnees: opening x

1. reduce to IP: $([c],[d], z): \exists \mathbf{a}, \mathbf{b}$ s.t $z=\mathbf{a}^{\top} \mathbf{b}$

Aggregation of vector commitment openings

Let's fold VC openings!

- Statement: $\left[c_{i}\right]$ opens to $x_{i_{1}}, \ldots, x_{i_{k}}$ at positions i_{1}, \ldots, i_{k}
- Witnees: opening x

1. reduce to IP: $([c],[d], z): \exists \mathbf{a}, \mathbf{b}$ s.t $z=\mathbf{a}^{\top} \mathbf{b}$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}

Aggregation of vector commitment openings

Let's fold VC openings!

- Statement: $\left[c_{i}\right]$ opens to $x_{i_{1}}, \ldots, x_{i_{k}}$ at positions i_{1}, \ldots, i_{k}
- Witnees: opening x

1. reduce to IP: $([c],[d], z): \exists \mathbf{a}, \mathbf{b}$ s.t $z=\mathbf{a}^{\top} \mathbf{b}$

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}

0	0	y_{3}	y_{4}	0

Aggregation of vector commitment openings

Let's fold VC openings!

- Statement: $\left[c_{i}\right]$ opens to $x_{i_{1}}, \ldots, x_{i_{k}}$ at positions i_{1}, \ldots, i_{k}
- Witnees: opening x

1. reduce to IP: $([c],[d], z): \exists \mathbf{a}, \mathbf{b}$ s.t $z=\mathbf{a}^{\top} \mathbf{b}$

Aggregation of vector commitment openings

Let's fold VC openings!

- Statement: $\left[c_{i}\right]$ opens to $x_{i_{1}}, \ldots, x_{i_{k}}$ at positions i_{1}, \ldots, i_{k}
- Witnees: opening x

1. reduce to IP: $([c],[d], z): \exists \mathbf{a}, \mathbf{b}$ s.t $z=\mathbf{a}^{\top} \mathbf{b}$

2. (Simple) folding scheme for IP

Aggregation of vector commitment openings

Let's fold VC openings!

- Statement: $\left[c_{i}\right]$ opens to $x_{i_{1}}, \ldots, x_{i_{k}}$ at positions i_{1}, \ldots, i_{k}
- Witnees: opening x

1. reduce to IP: $([c],[d], z): \exists \mathbf{a}, \mathbf{b}$ s.t $z=\mathbf{a}^{\top} \mathbf{b}$

2. (Simple) folding scheme for IP
3. Use bootstrapping

Folding scheme for IP

Claim:

- Statement: $\left(\left[c_{1}\right],\left[d_{1}\right], z_{1}\right),\left(\left[c_{2}\right],\left[d_{2}\right], z_{2}\right) \in \mathrm{IP}$,
- Witness $\left(\mathbf{a}_{1}, \mathbf{b}_{1}\right),\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right)$.

Folding scheme for IP

Claim:

- Statement: $\left(\left[c_{1}\right],\left[d_{1}\right], z_{1}\right),\left(\left[c_{2}\right],\left[d_{2}\right], z_{2}\right) \in \mathrm{IP}$,
- Witness $\left(\mathbf{a}_{1}, \mathbf{b}_{1}\right),\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right)$.

$$
\begin{aligned}
& \mathcal{P}: \mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{a}_{2}, \mathbf{b}_{2} \mathcal{V}:\left[c_{1}\right],\left[d_{1}\right], z_{1},\left[c_{2}\right],\left[d_{2}\right], z_{2} \\
& z_{1,2}=\mathbf{a}_{1}^{\top} \mathbf{b}_{2} \\
& z_{2,1}=\mathbf{a}_{2}{ }^{\top} \mathbf{b}_{1} \\
& z_{1,2}, z_{2,1} \\
& \longleftarrow \\
& x \leftarrow \mathbb{F} \\
& \mathrm{a}=\mathrm{a}_{1}+x \mathrm{a}_{2} \\
& \mathbf{b}=\mathbf{b}_{1}+x^{2} \mathbf{b}_{2} \\
& \begin{array}{l}
{[c]=\left[c_{1}\right]+x\left[c_{2}\right]} \\
{[d]=\left[d_{1}\right]+x^{2}\left[d_{2}\right]} \\
z=z_{1}+x \cdot z_{2,1}+x^{2} \cdot z_{1,2}+x^{3} z_{2}
\end{array}
\end{aligned}
$$

Folding scheme for IP

Claim:

- Statement: $\left(\left[c_{1}\right],\left[d_{1}\right], z_{1}\right),\left(\left[c_{2}\right],\left[d_{2}\right], z_{2}\right) \in \mathrm{IP}$,
- Witness $\left(\mathbf{a}_{1}, \mathbf{b}_{1}\right),\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right)$.

$$
\begin{aligned}
& \mathcal{P}: \mathbf{a}_{1}, \mathbf{b}_{1}, \mathbf{a}_{2}, \mathbf{b}_{2} \\
& \mathcal{V}:\left[c_{1}\right],\left[d_{1}\right], z_{1},\left[c_{2}\right],\left[d_{2}\right], z_{2} \\
& z_{1,2}=\mathbf{a}_{1}^{\top} \mathbf{b}_{2} \\
& z_{2,1}=\mathbf{a}_{2}{ }^{\top} \mathbf{b}_{1} \\
& z_{1,2}, z_{2,1} \\
& x \leftarrow \mathbb{F} \\
& \mathrm{a}=\mathrm{a}_{1}+x \mathrm{a}_{2} \\
& \mathbf{b}=\mathbf{b}_{1}+x^{2} \mathbf{b}_{2} \\
& {[c]=\left[c_{1}\right]+x\left[c_{2}\right]} \\
& {[d]=\left[d_{1}\right]+x^{2}\left[d_{2}\right]} \\
& z=z_{1}+x \cdot z_{2,1}+x^{2} \cdot z_{1,2}+x^{3} z_{2}
\end{aligned}
$$

VC opening

Proving m openings:

- One single NIZK for IP
- $\mathcal{O}(m)$ hash function ${ }^{1}$ computations (FS)
- $\mathcal{O}(m)$ inner-products in \mathbb{F} (comparable to reading the statement)

[^0]
VC opening

Proving m openings:

- One single NIZK for IP
- $\mathcal{O}(m)$ hash function ${ }^{1}$ computations (FS)
- $\mathcal{O}(m)$ inner-products in \mathbb{F} (comparable to reading the statement)

Verification:

- $O(\log m)$ group operations
- $O(\log m)$ hash computations

[^1]
Applications

Folding schemes for:

- Inner product relations
- Polynomial commitment opening
- Relaxed R1CS [NOVA]

Applications

Folding schemes for:

- Inner product relations
- Polynomial commitment opening
- Relaxed R1CS [NOVA]

Folding much cheaper than NIZK proof!

Applications

Folding schemes for:

- Inner product relations
- Polynomial commitment opening
- Relaxed R1CS [NOVA]

Folding much cheaper than NIZK proof!
Use cases:

- Aggregation of polynomial holographic proofs based SNARKs
- NOVA's style aggregation

Future work

- Applications? (Public verifiability vs aaS...)

Future work

- Applications? (Public verifiability vs aaS...)
- Privacy?

Future work

- Applications? (Public verifiability vs aaS...)
- Privacy?
- Statement Vector Commitments?

Future work

- Applications? (Public verifiability vs aaS...)
- Privacy?
- Statement Vector Commitments?
- Other relations PLONK/AIR style NOVA?

[^0]: ${ }^{1}$ No recursion circuit involved!

[^1]: ${ }^{1}$ No recursion circuit involved!

